

LYON, 1–4 September 2013 Ecole Normale Supérieure de Lyon

The European Turbulence
Conference gathers every two years
the community of scientists
involved in the study of turbulence,
from fundamental physics issues
to applied fluid mechanics.

#### Invited speakers

- 1. Axel Brandenburg (Nordita, Sweden)
- 2. Roberto Camussi (Roma Tre University, Italy)
- 3. François Daviaud (CEA, France)
- 4. Arne V. Johansson (KTH Stockholm, Sweden)
- 5. Rich Kerswell (Univ. of Bristol, U.K.)
- 6. Szymon Malinowski (Univ. of Warsaw, Poland)
- 7. Beverly J. McKeon (CalTech, Pasadena, U.S.A.)
- 8. Haitao Xu (MPI Goettingen, Germany)

## Program

contact e: etc14@ens-lyon.fr w: etc14.ens-lyon.fr

#### **SPONSORS**



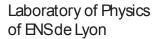










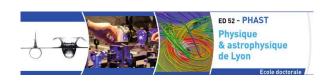





















## **SESSIONS**

|                             | Room 1 | Room 2 | Room 3         | Room 4 | Room 5 |
|-----------------------------|--------|--------|----------------|--------|--------|
| Sunday <b>9:00-9:55</b>     |        | Plenai | ry session (Ro | om 1)  |        |
| Sunday <b>10:00-11:00</b>   | LT     | AT     | CRYO           | NNF    | WT     |
| Sunday <b>11:30-12:45</b>   | PT     | BL     | PF             | MHD    | GAF    |
| Sunday <b>14:15-15:10</b>   |        | Plenai | ry session (Ro | om 1)  |        |
| Sunday <b>15:15-16:30</b>   | PT     | BL     | PF             | MHD    | GAF    |
| Sunday <b>17:00-18:45</b>   | PT     | CTL    | СТ             | JET    | 2D     |
| Monday 8:30-9:25            |        | Plenai | ry session (Ro | om 1)  |        |
| Monday <b>9:30-10:45</b>    | PT     | BL     | IT             | CONV   | ROT    |
| Monday 11:15-12:45          | PT     | BL     | IT             | CONV   | FA     |
| Monday <b>14:15-15:10</b>   |        | Plenai | ry session (Ro | om 1)  |        |
| Monday <b>15:15-16:15</b>   | LT     | CTL    | CRYO           | MHD    | FA     |
| Monday <b>16:45-17:45</b>   | PT     | ENG    | RF             | MHD    | FA     |
| Tuesday 8:30-9:25           |        | Plenai | ry session (Ro | om 1)  |        |
| Tuesday <b>9:30-10:45</b>   | FA     | PF     | IT             | CONV   | ROT    |
| Tuesday <b>11:15-12:45</b>  | FA     | CTL    | IT             | CONV   | GAF    |
| Tuesday <b>14:15-15:10</b>  |        | Plenai | ry session (Ro | om 1)  |        |
| Tuesday <b>15:15-16:30</b>  | PT     | BL     | NUM            | MHD    | GAF    |
| Tuesday <b>17:00-18:45</b>  | PT     | BL     | СТ             | NNF    | TH     |
| Wednesday 8:30-9:25         |        | Plenai | ry session (Ro | om 1)  |        |
| Wednesday <b>9:30-10:45</b> | TC     | STR    | CRYO           | PSM    | ROT    |
| Wednesday 11:15-12:45       | TC     | ENG    | JET            | CONV   | TH     |
| Wednesday 14:15-15:10       |        | Plenai | ry session (Ro | om 1)  |        |
| Wednesday 15:15-16:30       | EXP    | NUM    | IT             | PSM    | WT     |
| Wednesday 17:00-17:45       | EXP    | NUM    | IT             | STR    | PF     |

Plenary sessions in Room 1 will be broadcasted in Room 1b. Sessions in Room 3 will be broadcasted in Room 6.

## SESSIONS

| 2D   | 2D turbulence            |
|------|--------------------------|
| AT   | Acoustics                |
| BL   | Boundary layers          |
| CONV | Convection               |
| CRYO | Cryogenics               |
| СТ   | Compressible turbulence  |
| CTL  | Control                  |
| ENG  | Engineering              |
| EXP  | Experiments              |
| FA   | Fundamental aspects      |
| GAF  | Geo/Astrophysics         |
| IT   | Instability & Transition |
| JET  | Jets                     |
| LT   | Lagrangian turbulence    |
| MHD  | Magnetohydrodynamics     |
| NNF  | Non-Newtonian fluids     |
| NUM  | Numerics                 |
| PF   | Pipe flows               |
| PSM  | Passive scalar & Mixing  |
| PT   | Particles                |
| RF   | Reacting flows           |
| ROT  | Rotation                 |
| STR  | Stratification           |
| TC   | Taylor-Couette           |
| TH   | Theory                   |
| WT   | Wave turbulence          |

## Sunday, September 1, 7:30-11:00

| C+L |  |  |  |
|-----|--|--|--|
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |

| 9                        |              |                                           |              |                               |           |                  |                   |                                                                                      |             | Room 5 | tonian) SA.5 - WT1 (Wave Turbulence) M. Bustamante | Chan-ment In Breaking Lee Waves At D ifferent Reynolds And Prandtl/Sch -midt Numbers Sergey N. Yakovenko; T. Glyn Thomas; Ian P. Castro                         | ts Of Di Numerical Investigation On Transiton (1900) ton Of 2-d Faraday Waves Kentaro TAKAGI, Takeshi MATSUMOTO                                                                                     | n Of Vis Complete Classification Of Discrete ian Flu-Resonant Rossby/drift Wave Tri- ies ads On Periodic Domains arlos Miguel Bustamante, Umar Hayat                                                 | Flexible Inertial Waves And Wave Excitation Mechanisms In Annular Cavities: Simulations, Experiments And Theory Marten Klein; Ion Dan Borda; Christoph Egbers, Abouzar Ghasemi V.; Uwe Harlander; Michael V. Kurgarsky; Eberhard Schaller; Torsten Seelig; Andreas Will |
|--------------------------|--------------|-------------------------------------------|--------------|-------------------------------|-----------|------------------|-------------------|--------------------------------------------------------------------------------------|-------------|--------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |              |                                           |              |                               |           |                  |                   |                                                                                      |             | Room 4 | <b>SA.4 - NNF1 (Non-Newtonian)</b><br>D. Vincenzi  | Dns Study Of The Elastic Turbu-<br>lence In A 3d Parallel Plate Chan-<br>nel<br>Hongna Zhang; Tomoaki Kunugi;Fengchen<br>U                                      | Experimental Measurements Of Di<br>lute Polymer Solutions In A Von<br>Karman Swirling Flow<br>Aexardre de Chaumont Quitry; Nicholas Ou<br>elette                                                    | Direct Numerical Simulation Of Vis<br>coplastic-type Non-newtonian Flu-<br>id Flows In Stenosed Arteries<br>Angel Camona; Oriol Lehmkuhl; Carlos<br>David Pérez-Segarra; Asensi Oliva                | Elastic Energy Transfer By Flexible<br>Polymers In Fluid Turbulence<br>Eberhard Bodenschatz; Heng-Dong Xi;<br>Haitao Xu                                                                                                                                                 |
| EIC14 Program            | REGISTRATION |                                           | REGISTRATION |                               | OPENING   |                  | PLENARY SESSION 1 |                                                                                      | SA.1-5      | Room 3 | <b>SA.3 - CRYO1 (Cryogenic)</b><br>C. Barenghi     | Lagrangian Dynamics Of Solid Particles In Quantum Turbulence<br>Marco La Mantia; Daniel Duda; Miloš Rotter;<br>Ladislav Skrbek                                  | First Results Of The Shrek Experiment At Ultra-high Reynolds Number Berengere Dubrulle; SHREK Collaboration                                                                                         | Hot-wire Measurements In A Liq-<br>uid He Turbulent Inertial Jet: In-<br>termittency In He II<br>Davide Dui; Pantxo Diribame; Jean-Paul M<br>oro; Philippe Charvin; Yves Gagne;<br>Christophe Baudet | Motion Of Toroidal Bundles Of Vortex Rings Carlo F. Barenghi; Daniel H. Wacks; Andrew W. Baggaley                                                                                                                                                                       |
|                          |              | /on)                                      |              | (no/                          |           |                  |                   | well (Room 1)                                                                        |             | Room 2 | SA.2 - AT1 (Acoustics) N. Mordant                  | Noise Radiation From Instability Waves In Subsonic Coaxial Jets Michael Gloor, Domirik Obrist, Leonhard Kleiser                                                 | Acoustic - Induced Turbulence In<br>Bubbles<br>Frank Secretain; Andrew Pollard; Brian Milne                                                                                                         | Interaction Of Acoustic Waves An<br>d Roughness Elements In A Three-<br>dimensional Boundary Layer<br>Nima Shahriari, Ardeshir Hanifi; Dan Hen-<br>ningson                                           | Synchronized Vortex Shedding And Sound Generation In A Corrusera Russo; Flavio Gannett; Paolo Luchini; David Fabre                                                                                                                                                      |
| lugust 2013              |              | Registration (Lobby ENS-Lyon) tember 2013 |              | Registration (Lobby ENS-Lyon) |           | Opening (Room 1) |                   | Plenary Session 1 - Rich Kerswell (Room 1) Recurrent Flows Embedded In 2d Turbulence |             | Room 1 | SA.1 - LT1 (Lagrangian)<br>O. Kamps                | Lagrangian Single Particle Turbulent Statistics Through The Hilberthuang Transform Yongxiang Huang; Luca Biferale; Enrico Cabavarini; Chao Sun; Federico Toschi | On The Comparison Of The Dy-<br>namics Of Particles Within Homo-<br>geneous Isotropic Turbulence And<br>The Reynolds And Favre Filtered Fl<br>ow Velocities. Paul Stegeman; Julio Soria; Andrew Ooi | Particle Transport In Weakly Turbulent Rayleigh-benard Convection tion Simon Schütz; Eberhard Bodenschatz                                                                                            | Lagrangian Statistics Of Particles I n Rotating Turbulent Convection Herman Clerc; Prasad Patekar; Lorenzo Del Castello; Federico Toschi                                                                                                                                |
| Saturday, 31 August 2013 | 17:00-19:30  | Registration (L Sunday, 1 September 2013  | 7:30-8:45    |                               | 8:45-9:00 |                  | 9:00-9:55         |                                                                                      | 10:00-11:00 |        |                                                    |                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                         |

## Sunday, September 1, 11:00-15:10

| 11:00-11:30 |                                                                                                                                                        |                                                                                                                                                                                                                     | COFFEE BREAK                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Coffee break                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                            |
| 11:30-12:45 |                                                                                                                                                        |                                                                                                                                                                                                                     | SB.1-5                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                            |
|             | Room 1                                                                                                                                                 | Room 2                                                                                                                                                                                                              | Room 3                                                                                                                           | Room 4                                                                                                                                                                   | Room 5                                                                                                                                                     |
|             | <b>SB.1 - PT1 (Particles)</b><br>R. Monchaux                                                                                                           | <b>SB.2 BL1 (Boundary Layers)</b> M. Schultz                                                                                                                                                                        | <b>SB.3 - PF1</b> (Pipe FLows) B. Hof                                                                                            | <b>SB.4 - MHD1 (MHD)</b><br>N. Pilhon                                                                                                                                    | SB.5 - GAF1 (Geo-Astro) B. Dubrulle                                                                                                                        |
|             | Interaction Between Cloud Droplet<br>s And Turbulence<br>Toshiyuki Gotoh; Yuya Kozaki; Yuki Suzuki;<br>Takeshi Watanabe                                | Nonlinear Vortex Structures In<br>Boundary Layer Flow<br>Hakan Wedin; Giuseppe Zampogna;<br>Alessandro Bottano                                                                                                      | Turbulent-laminar Bands In Plane Poiseuille Flow Laurette Tuckerman                                                              | On The Four-fifths Law In Magne-<br>tohydrodynamic Turbulence<br>Katsunori Yoshimatsu                                                                                    | Lagrangian Reconstructions Of Surface Ocean Turbulence<br>Stefano Berti, Guillaume Lapeyre                                                                 |
|             | Modeling Of Turbulence Attenua-<br>tion In Particle- Or Droplet-laden Fl<br>ows<br>Daniel Meyer                                                        | A Nested-les Wall-modeling Approach For High Reynolds Number Wall Flows Yifeng Tang, Rayhaneh Akhavan                                                                                                               | Direct Numerical Simulation Of Turbulent Pipe Flow At High Reynolds Numbers. Bendiks Boersma                                     | Large Scale Magnetic Fields In<br>Mhd Turbulence<br>Alexandros Alexakis                                                                                                  | Statistical Mechanics Of Shallow Water Equations Adrien LICARI; Max POTTERS; Antoine VENAILLE; Freddy BOUCHET                                              |
|             | Dynamics Of Homogeneous Shear<br>Turbulence Laden With Finite-size<br>Particles<br>Misuru Tanaka; Takayuki Wazaki                                      | Quasi-steady Modulation Of Nearwall Turbulence Sergei Chemyshenko; Ivan Marusic; Romain Mathis                                                                                                                      | Turbulence And Cyclic Bursts In<br>Rotating Channel Flow<br>Geert Brethower; Liang Wei; Philipp Schlat-<br>ter; Ame V. Johansson | An Exact Relation For Compressible Mhd Turbulence Supratik BANENEE; Sébastien GALTIER                                                                                    | Experimental Investigation Of Entrainment Into A Gravity Current Dominik Krug; Markus Holzner; Beat Lüthi; Marc Wolf, Wolfgang Kinzelbach; Arkady Tsinober |
|             | Interfaces Of Long Bubbles In Horizontal Turbulent Slug Flow Luis Matamoros; Juliana Loureiro; Atila Freire                                            | Continuous Spectra And Entrainment Of Free-stream Vortical Disturbances In Asymptotic Suction B oundar Layer Xuesong Wu; Ming Dong                                                                                  | Flow Around Circular Cylinder In A<br>Pipe<br>Venugopal Arumuru; Amit Agrawal; Prabhu<br>S. V                                    | Effects Of Mhd Turbulence On Mea<br>n Magnetic Pressure And Forma-<br>tion Of Magnetic Structures<br>Igor Rogachevskii, Axel Brandenburg, Koen<br>Kemel; Nathan Kleeorin | Stochastic Averaging And Jet Formation In Turbulent Planetary Atmospheres Freddy Bouchet; Cesare Nardini; Tomas Tangarife                                  |
|             | Dns Of Turbulent Channel Flows La<br>den With Finite-size Particles At Hi<br>gh Volume Fractions<br>francesco picano; Wim-Paul Breugem; Luca<br>Brandt | Perturbed Cross-flow Boundary La<br>yer: Nontrivial Effects Of The Obliq<br>uity Angle At Small And High Reyn<br>olds Numbers<br>Francesca De Santi; Stefania Scarsoglio;<br>William O. Criminale; Daniela Tordella | Analysis Of Kinetic Energy Spectra<br>In Oscillatory Pipe Flows<br>Daniel Feldmann; Claus Wagner                                 | Energy Transfers For Large Eddy<br>Simulations Of Magnetohydrody-<br>namic Turbulence<br>Mouloud Kessar; Guillaume Balarac; Franck<br>Plunian                            |                                                                                                                                                            |
| 12:45-14:15 |                                                                                                                                                        |                                                                                                                                                                                                                     | LUNCH                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                            |
|             | Lunch (Lunch Hall)                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                            |
| 14:15-15:10 |                                                                                                                                                        |                                                                                                                                                                                                                     | PLENARY SESSION 2                                                                                                                |                                                                                                                                                                          |                                                                                                                                                            |
|             | Plenary Session 2 - Szymon Malinowski (R00m 1) Turbulent Entrainment And Mixing In Clouds                                                              | Malinowski (Room 1)<br>In Clouds                                                                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                            |

## Sunday, September 1, 15:15-17:00

|                                                                                                                                                                       |                                                                                                                                                                                                                      | SC.1-5                                                                                                                                                        |                                                                                                                                                                                     |                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                                | Room 2                                                                                                                                                                                                               | Room 3                                                                                                                                                        | Room 4                                                                                                                                                                              | Room 5                                                                                                                                |
| SC.1 - PT2 (Particles)<br>J. Bec                                                                                                                                      | SC.2 - BL2 (Boundary Layers) J. Westerweel                                                                                                                                                                           | SC.3 - PF2 (Pipe Flows) G. Brethouwer                                                                                                                         | <b>SC.4 - МНD2 (МНD)</b><br>W. Bos                                                                                                                                                  | SC.5 - GAF2 (Geo-Astro)<br>A. Alexakis                                                                                                |
| Identifying Particle Clusters In Turbulent Flow Christopher Nilsen; Helge Anderson                                                                                    | Skin-friction Measurements In The Transitionally Regime Michael School Karen Rack                                                                                                                                    | Experimental Investigation Of The Influence Of Curvature On Transition To Turbulence In A Pipe Jakob Kühnen; Michael Schwegel; Björn Höf, Hendrik C. Kuhlmann | A Self-consistent Model For Turbu-<br>lent Magnetic Reconnection<br>Nobumitsu Yokoi; Katsuaki Higashimon;<br>Masahiro Hoshino                                                       | Random Transitions In Stochastic<br>Turbulent Flows<br>Freddy Bouchet; Jason Laurie;<br>Eric Simornet; Oleg Zaboronski                |
| Accumulation Of Motile Microor-<br>ganisms In Turbulence<br>Cajjuan Zhan; Gaetano Sardina; Enkeleida<br>Lushi; Luca Brandt                                            | Experimental Investigation of The Near And Far Field Structure of High Reynolds Number Turbulent Boundary Layers Nicoles Buchmann; Callum Atkinson; Charith a de Silva, Nicholas Hutchins; Ivan Marusic; Julio Soria | From Localized Periodic Orbits To Transients In Pipe Flow Marc Avila; Fernacto Wellbovsky; Nicolas Rolan Gorn Hof                                             | Mhd Turbulence At High Interaction Parameter Sophie MIRALLE; Gautier VERHILLE; Nicolas PLIHON; Jean-Francois PINTON                                                                 | Reproduction Of 2d Chaotic Zonal<br>Flowon A Rotating Sphere<br>Elichi Sasaki, Shir-ichi Takehiro; Michio Ya-<br>mada                 |
| Clustering Of Gyrotactic Microorganisms In Turbulent Flows Guido Boffetta; Michael Barry; Massimo Cencini; Erc Climent, Flippo De Lilo; William Durham; Roman Stocker | Exploring The Connection Between Interfacial Bulging At The Edge Of The Turbulent Boundary Layer And Large-scale Motions Ne ar The Wall Nicholas Hutchins; Jason Monty                                               | Localized Periodic Orbits In Plane Poiseuille Flow Stefan Zammert, Bruno Eckhardt                                                                             | Energy Spectrum For Quasi-static Mhd For High Interaction Parameters  K. Sandeep Reddy; Mahendra Kumar Verma                                                                        | A New Formulation Of The Spectral Energy Budget Of The Atmosphere, With Application To Two High-resolution General Circulation Models |
| Gyrotactic Clustering From Turbu-<br>lent Acceleration<br>Massimo Cencini                                                                                             | Effects Of Hot-wire Measurement In Wall-bounded Flows Studied Vi a Direct Numerical Simulation Juan A. Sillero; Javier Jimenez                                                                                       | Relaminarising Fully Turbulent<br>Pipe Flow<br>Baofang Song, Marc Avila; Bjöm Hof                                                                             | Fluid And Kinetic Modelling Of The Magnetized Kelvin-helmholtz Instability Perre Henri; Francesco Califano; Stefano Markids; Matteo Faganello; Giovanni Lapenta; Francesco Pegoraro | Jet Formation By Potential Vorticity Mixing At Large And Small Scales Richard Scott                                                   |
| Effects Of Polymer Additives On<br>Turbophoresis In A Turbulent<br>Channel Flow<br>Gaetano Sardina; Arash Nowbahar;<br>Francesco Picano; Luca Brandt                  | Spanwise Measurements Of Turbulence Structure Over Permeable Walls Yuka Nakagawa; Masayuki Kaneda; Kazuhiko Suga                                                                                                     | Localised Exact Solutions Of Pipe<br>Flow<br>Fernando Mellibovsky; Marc Avila; Roland Ni<br>colas; Hof Björn                                                  | The Three Dimensionalities Of Mhd Turbulence Alban Potherat; Klein Rico                                                                                                             | Stochastic Decomposition Of Atmospheric Turbulence Alan Morales; Matthias Wächter, Joachim Peinke                                     |
|                                                                                                                                                                       |                                                                                                                                                                                                                      | COFFEE BREAK                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                       |

Coffee Break

## Sunday, September 1, 17:00-20:30

|                                                                                                                                                                                                           |                                                                                                                                                                       | SD.1-5                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                                                                    | Room 2                                                                                                                                                                | Room 3                                                                                                                                                                         | Room 4                                                                                                                                                          | Room 5                                                                                                                                  |
| SD.1 - PT3 (Particles)<br>H. Homann                                                                                                                                                                       | SD.2 - CTL1 (Control)<br>B. McKeon                                                                                                                                    | <b>SD.3 - CT1 (Compressible)</b><br>P. Frick                                                                                                                                   | SD.4 - JET1 (Jets)<br>L Danaila                                                                                                                                 | SD.5 - 2D (2D turbulence)<br>F. Bouchet                                                                                                 |
| Sweep-stick Mechanisms Of Iner-<br>tial Particles In Turbulence: A Com-<br>parison Of Voronoï Analysis In Dns<br>And Experiments<br>Martin Obligado; Alain Cartellier, Pablo Minimi<br>; Mickael Bourgoin | Cooperative Drag Reducing Effect Of Longitudinal Riblets And Span- wise Wall Oscillations. Nikolay Niktin; Ivan Vodopianov                                            | Studies Of Turbulent Mixing In<br>Shock-driven Richtmyer-meshkov<br>Instability<br>Daniel Meiron; Manuel Lombardini; Dale<br>Pullin                                            | Numerical Study Of A Quasi-two-di<br>mensional Confined Turbulent Jet<br>Rustam Mulyadzhanov; Boris Ilyushin;<br>Muhamed Hadziabdic; Kemal Hanjalic             | Turbulent Coherent Structures Driven In Parametrically Excited Surface Ripples Michael Shats; Hua Xia; Nicolas Francois; Horst Purzmann |
| Particle Clustering In Radiation induced Turbulence Rémi Zamansky; Filippo Coletti; Marc Massot; Ali Mani                                                                                                 | Universal Friction Law For Turbu-<br>lent Boundary Layers With Wall<br>Suction<br>Igor Vigdorovich                                                                    | Exact Kolmogorov Law For Compressible Turbulence Sebastien Galtier; Supratik Banerjee                                                                                          | The Turbulent/non-turbulent In-<br>terface And Viscous Superlayer In<br>Turbulent Planar Jets<br>Carlos B. da Silva; Rodrigo R. Taveira                         | Hilbert-based Vorticity Statistics In<br>Two-dimensional Turbulence<br>Huanshu Tan; Yongxiang Huang; Jianping<br>Meng                   |
| Disentangled Effects Of The Reynolds And Stokes Numbers On The Clustering Of Heavy Particles In Turbulence Lionel Fabane; Romain Volk; Jean-François Pinton; Mickaël Bourgoin                             | Experimental Investigation Of Drag Reduction Effect In Wall Turbulence Over Travelingwave-like Rubber Sheet Yuho Ishiwata; Hiroya Mamori; Kaoru Iwamoto; Akira Murata | Reshock Of Self-similar Multimode<br>Richtmyer-meshkov Instability<br>At High Atwood Number In Heavy<br>-light And Light-heavy Configura-<br>tions<br>Mike Probyn; Ben Thomber | Analysis Of Dynamic-controlled Round Jet Using Pod And Dmd Koichi TSUJIMOTO; Nortaka SHIBATA; Toshiniko SHAKOUCHI; Toshitake ANDO                               | Faraday Surface Ripple Forced 2d Turbulence Nicolas RANCOIS; Hua XIA; Michael SHATS                                                     |
| Influence Of Preferential Concentration On The Settling Of Heavy Particles In Homogeneous Turbulence Romain Monchaux; Anne Dejoan                                                                         | Effectiveness Of Spanwise Forcing For Turbulent Drag Reduction At Higher Re Davide Gatti; Maurizio Quadrio; Cameron Tropea; Bettina Frohnapfel                        | Study On The Interaction Between Low-mach-number Grid Turbulence And Spherical Shock Wave Takuya Kitamura; Kouji Nagata; Yasuhiko Sakai; Akihiro Sasoh; Osamu Terashima        | Incomplete Similarity In A Plane Turbulent Wall Jet On A Rough Surface Zhujun Tang: Noorallah Rostamy; Donald J Bergstrom; James D Bugg; David Sumner           | Experimental Investigation Of Large Scale Circulation Generated Over A 2d Turbulent Flow Johann Herault, Francois Petrelis              |
| Settling Velocity Of Small Particles In High-resolution Homogenous Isotropic Turbulence Bogdan Rosa; Orlando Ayala; Hossein Parshani; Lan-Ping Wang                                                       | Wall Turbulence Control By Span-<br>wise Traveling Waves<br>Wenxuan Xie; Maurzio Quadrio                                                                              | The Influence Of The Fluid Acceleration Term On The Simulation Of A Particle-laden Compressible Jet With Shock Waves Flavia Cavalcanti Miranda; Ame Heinrich; Jöm Sesterhenn   | Liquid Jet Simulation Using One<br>dimensional Turbulence<br>Falko Schulz; Christoph Glawe; Helko<br>Schmidt; Alan Kerstein                                     | On Scalings In Forced 2d Turbu-<br>lence<br>Jérôme Fontane, Robard K. Scott; David G.<br>Dritschel                                      |
| Experimental Study Of Clustering Of Floaters On The Free Surface Of A Turbulent Flow Pablo Gutierrez; Sebastien Aumaitre                                                                                  | Reactive Control Of Spatially Developing Turbulent Boundary Layer er Alexander Stroh; Yosuke Hasegawa; Bettina Frohnapfel                                             | Dns Of Boundary Layer Transition<br>At Mach 6<br>Dmitry Khotyanovsky; Alexey Kudryavtsev                                                                                       | Direct Numerical Simulation Of<br>The Heat Transfer Of An Imping-<br>ing Jet<br>Thibault Dairay; Véronique Fortuné; Eric<br>Lamballais; Laurent-Emmanuel Brizzi | Fokker-planck Description Of The Inverse Cascade In Two-dimensional Turbulence Oliver Kamps; Michel Voßkuhle                            |
|                                                                                                                                                                                                           |                                                                                                                                                                       | Energy Cascade And Scaling In Supersonic Turbulence Aevei Kritsuk; Rick Wagner; Michael Norman                                                                                 | Direct Simulation Of Turbulent Entrainment In A Temporal Plane Jet Maarten van Reeuwijk; Markus Hotzner                                                         |                                                                                                                                         |
|                                                                                                                                                                                                           |                                                                                                                                                                       | WELCOME COCKTAIL                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                         |

# Welcome Cocktail (Lunch Hall)

## Monday, September 2, 8:30-11:15

| 8:30-9:25  |                                                                                                                                                                                             |                                                                                                                                                   | PLENARY SESSION 3                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Plenary Session 3 - François Daviaud (Room Instability of Turbulence                                                                                                                        | Daviaud (Room 1)                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                                                                |                                                                                                                                                                             |
| 9:30-10:45 |                                                                                                                                                                                             |                                                                                                                                                   | MA.1-5                                                                                                                                                               |                                                                                                                                                                                                                                                |                                                                                                                                                                             |
|            | Room 1                                                                                                                                                                                      | Room 2                                                                                                                                            | Room 3                                                                                                                                                               | Room 4                                                                                                                                                                                                                                         | Room 5                                                                                                                                                                      |
|            | MA.1 - PT4 (Partides)<br>R. Zamanski                                                                                                                                                        | MA.2 - BL3 (Boundary Layers) Y. Hasegawa                                                                                                          | MA.3 - IT1 (Instability & Transition) Y. Duguet                                                                                                                      | MA.4 - CONV1 (Convection) M. Creyssels                                                                                                                                                                                                         | MA.5 - ROT1 (Rotation) P. Cortet                                                                                                                                            |
|            | Gravity Effects On Particle Dynamics In Wall Turbulence Helge I. Andersson; Christopher Nilsen; Lihao Zhao                                                                                  | Turbulent Spots In Channel Flow: From Transient Growth To Self-sustainability Grégoire Lemoult; Jean-Luc Aider; José Eduardo Wesfreid             | Transition To Turbulence In Oscil-<br>latory Superflows<br>Risto Hänninen; Michael Niemetz; Wilfried<br>Schoepe                                                      | On The Motion Of Large-scale Cir-<br>culations In Mixed Convection<br>Daniel Schmeling; Johannes Bosbach; Claus<br>Wagner                                                                                                                      | Localized Unstable Modes In A<br>Precessing Sphere<br>Shigeo Kida                                                                                                           |
|            | Re-suspension Of Particles In An<br>Oscillating Grid Turbulent Flow<br>Hadar Traugott; Alex Liberzon                                                                                        | Characteristics Of The Interfaces In A Turbulent Boundary Layer Jerke Eisma; Genit Esinga; Jerry Westerweel                                       | Pipe Flow And Ultra-long Fiber Las er C<br>er<br>Gregory Falkovich                                                                                                   | Lagrangian Measurements Of Temperature And Velocity In Tur- bulent Thermal Convection Olivier Lidt; Farmy Seychelles; Julien Salot; Eleonore Rusaouen; Marius Tanase; Francesca Chillà; Bernard Castaing; Yoann Gasteuil; Jean-François Pinton | The Unsteady Flow Within A Rotating Torus Ilm Denier, Richard Clarke; Hewitt Richard; Andrew Hazel                                                                          |
|            | Experimental Validation Of A Constant Surface Shear Stress In Particle Saltation Layers Benjamin Walter; Stefan Horender; Christian Vögeli; Michael Lehning                                 | The Significance Of Hairpin Vortices In Turbulent Boundary Layers ers Georg Etel-Amor, Ramis Orlu; Philipp Schlatter                              | Optimal Amplification Of Streamwise Streaks In Plane Jets And Their Stabilizing Effect On The Infectional Instability Geardo Del Guerdo, Carlo Cossu; Gregory Pujals | The Large-scale Circulation In Turbulent Rayleigh—b\enard Convection In An Aspect Ratio 1 Cell At Large Rayleigh Numbers Dennis Paulus Maria van Gils; Xiaozhou He; Guenter Ahlers; Eberhard Bodenschatz                                       | Laboratory Simulation Of Zonation In Rotating Flows Stefania Espa, Gabriella Di Nitto                                                                                       |
|            | Bringing Clouds Into The Lab<br>Atug Yavuz; Rudie Kunnen; Herman Clercx;<br>Gerban Heijst                                                                                                   | Flow Visualization Of Hairpin Vortices In A Mach 3.0 Flat-plate Boundary Layer Lin He; Shihe Yi, Zhi Chen; Yangzhu Zhu                            | Subcritical Transition To Turbu-<br>lence: A Model Inspired From The<br>Physics Of Glasses<br>Olivier Dauchot, Eric Bertin                                           | Measurement Of The Temperature Field In A Rayleigh-benard Turbulent Convection Cell By Laser Induced Fluorescence Denis Furfschilling; Guillaume Castanet; Nicolas Rimbert                                                                     | Symmetry-breaking Flows In Pre-<br>cessing Spherical Containers<br>Caroline Noe; Rainer Hollerbach; Francky<br>Luddens; Jacques Leorat; Philippe Marti;<br>Stijn Vartdeghem |
|            | Studies Of Gas-particle Interaction: Implications For The Streaming In stability In Protoplanetary Disks Holly Capelo; Haltao Xu; Michiel Lambrechts; Anders Johansen; Eberhard Bodenschatz | Imaging Of Micro-ramps In Supersonic Flow And The Effect On Flow<br>Over Double Wedge<br>Zhang Qinghu; Yi Shihe; He Lin; Chen Zhi;<br>Zhu Yangzhu | The Complex Unsteady Flow Within A Fluid Filled Annulus And Its Transition To Turbulence Sophie Calabretto; Jim Denier, Trent Mattner                                | Numerical Investigation Of Flow reversals In A Flat Rayleigh-Bé-nard Cell Anne Sergent; Bérengère Podvin                                                                                                                                       | Turbulence, Intertial Waves And Vortex Column Formation In A Ro- tating Fluid Matias Duran Matute; Jan-Bert. FLOR; Fabien Godeferd                                          |

Monday, 2 September 2013

**Coffee Break** 

COFFEE BREAK

## Monday, September 2, 11:15-15:10

|                                                                                                                                                                                                      |                                                                                                                                                                    | MB.1-5                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                                                               | Room 2                                                                                                                                                             | Room 3                                                                                                                                                                        | Room 4                                                                                                                                                                                                       | Room 5                                                                                                                                                            |
| MB.1 - PT5 (Particles) L Brandt                                                                                                                                                                      | MB.2 - BL4 (Boundary Layers) A. Busse                                                                                                                              | MB.3 - IT2 (Instability & Transition)                                                                                                                                         | MB.4 - CONV2 (Convection) J. Salort                                                                                                                                                                          | MB.5 - FA1 (Fundamental Aspects) F. Moisy                                                                                                                         |
| Particles In Homogeneous Shear<br>Turbulence<br>Midrel van Hinsberg; Herman Clercx; Prasad<br>Perlekar, Federico Toschi                                                                              | On The Validity Of The Law Of The Wall Gary N Coleman; Philippe R Spalart                                                                                          | Transition To Turbulence In 4he Due To Mechanical Oscillators David Schoncanzer; Martial Defoort; Sebastien Dufresnes; Eddy Collin; Henri Godfrin; Ladislav Skrbek            | Mathematical Analysis Of Heat Transport In Turbulent Convection Charles R. Doering                                                                                                                           | Explicit Formula Of Energy-<br>conserving, Fokker-planck-type<br>Collision Term For Single-species<br>Point Vortex System<br>Yuichi Yatsuyanagi; Tadatsugu Hatori |
| Tumbling Rates In Turbulent And<br>Random Flows<br>Kristan Gustavsson; Jonas Einarsson;<br>Bemhard Mehlig                                                                                            | Energy Growth In Transient Channel Flow Shuisheng He; Mehdi Seddighi                                                                                               | Non Modal Subcritical Transition Of Channel Entry Flow? Marc BUFFAT; Lionel Le Penven; Anne Cadiou                                                                            | Temperature And Velocity Gradients In Turbulent Convection Joerg Schumacher, Janet Scheel; Mohammad Emran                                                                                                    | New Turbulent Scaling Laws From<br>The Multi-point Correlation Equa-<br>tions<br>Andreas Rosteck; Martin Oberlack                                                 |
| Effect Of Flow Anisotropy On Dispersion And Distribution Of Partides  des  Armann Gylfason; Chung-min Lee; Prasad Perlekar, Federico Toschi                                                          | Dns Of Channel Flow With Two-sca<br>le Surface Roughness On One Wall<br>Hiroki Suzuki; Richard Perkins                                                             | Transitional Convective Structures<br>In A Liquid Layer With A Drift<br>Flow<br>Galina Rybushkina; Vladimir Reutov                                                            | Temperature And Velocity Fluctu- ations In Forced Stably Stratified And Convective Turbulent Flows: Experiments And Theory Alexander Eidelman; Tov Elperin; Igal Gluzman; Nathan Kleeorin; Igor Rogadrevskii | Length Scale To Determine The<br>Rate Of Energy Dissipation In Tur-<br>bulence<br>Hideaki Mouri                                                                   |
| Relative Velocities Of Inertial Parti-<br>des At The Dissipative Scales Of<br>Turbulence<br>Ewe-Wei Saw; Gregory P. Bewley;<br>Samriddhi S. Ray; Hölger Homann; Jeremie<br>Bec; Eberhard Bodenschatz | Higher Order Moments Of Passive<br>And Reacting Scalars And Their<br>Gradients In Turbulent Wall-jets<br>Zeinab Pouransan; Luca Biferale; Ame<br>Johansson         | Interpretation Of The Mechanism<br>Responsible For The Persistence<br>Of A Laminar Region In Turbulent<br>Duct Flow<br>Gerti Deschiel; Bettina Frohnapfel; Jovan<br>Jovanovic | Available Potential Energy In Rayleigh-benard Convection Graham Hughes; Bishakhdatta Gayen; Ross Griffiths                                                                                                   | New Conservation Laws For Helically Symmetric Flows And Their I mportance For Tubulence Theory Olga Kelbin; Alexei Cheviakov; Martin Oberlack; Ivan Delbende      |
| Turbulent Dispersion Of Heavy Droplets Humberto Bocanegra Evans; Nico Dam; Willem van de Water                                                                                                       | New Mean Velocity Scaling Laws<br>For Turbulent Poiseuille Flow With<br>Wall Transpiration<br>Victor Avsarkisov, Martin Oberlack; Sergio<br>Hoyas; George Khujadze | Mean Field Model For Turbulence<br>Transition In Plane Poiseuille Flow<br>Michael Rath; Bruno Exchardt                                                                        | On The Applicability Of Falkner-skan Boundary Layer Equations To Turbulent Thermal Convection Olga Shishkina; Susanne Hom; Sebastian Wagner                                                                  | Estimation Of Turbulence-development By A Multifractal Theory Toshihico Armisu, Naoko Armisu, Kohei Takechi, Yukio Kaneda, Takashi Ishihara                       |
| Relative Velocities Of Inertial Parti-<br>des In Random Flows<br>Kristian Gustavsson; Bemhard Mehlig                                                                                                 | Linear Dynamics Of A Boundary Layer Flow Over A Cylindrical Rugosity Jean-Christophe Loiseau; Jean-Christophe Robinet; Emmanuel Lerche                             | Higher Harmonic Resonance In<br>Laterally Heated Flow (Ihf) With<br>Poiseuille Flow Component (pfc)<br>Takesh Aknaga; Tomoaki Itano; Kaoru<br>Fujimura; Sotos Generalis       | Description Of Turbulent Rayleigh-<br>bénard Convection By Pdf Meth-<br>ods Exhibits Limit Cycle Behavior<br>Johannes Lüfff                                                                                  | On Relationship Between Instantaneous And Statistical Properties Of The Deterministic Turbulence Vladmir Bordulin; Yury Kachanov; Dmitry Mischenko                |
|                                                                                                                                                                                                      |                                                                                                                                                                    | LUNCH                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                   |
| Lunch (Lunch Hall)                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                   |

12:45-14:15

14:15-15:10

PLENARY SESSION 4

Plenary Session 4 - Haitao Xu (Room 1) Lagrangian Single-particle Statistics Of Fluid Turbulence

## Monday, September 2, 15:15-16:45

|                                                                                                                                                                                                     |                                                                                                                                                                                             | MC.1-5                                                                                                                                                                        |                                                                                                                                                                                                                                    |                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                                                              | Room 2                                                                                                                                                                                      | Room 3                                                                                                                                                                        | Room 4                                                                                                                                                                                                                             | Room 5                                                                                                                                                    |
| <b>MC.1 - LT2 (Lagrangian)</b><br>L Bíferale                                                                                                                                                        | MC.2 - CTL2 (Control) D. Fabre                                                                                                                                                              | MC.3 - CRYO2 (Cyogenics)<br>L. Skrbek                                                                                                                                         | MC.4 - MHD3 (MHD)<br>G. Vertille                                                                                                                                                                                                   | MC.5 - FA2 (Fundamental Aspects) K. Schneider                                                                                                             |
| Experimental Observation Of A Single Lagrangian Scale Of Particle Dispersion In Developed Twodimensional Turbulence Hua Xia, Nicolas Francois; Horst Punzmann; Michael Shats                        | Steady Suction And Pulsed Blow-<br>ing For Effective Bluff-body Flow<br>Control<br>Avi Seiert, Tom Shtendel                                                                                 | Systematics Of Turbulence In The Dissipationless, Unforced, 2d, Fourier-truncated Gross-pitaevskii Equation Rahul Pandit, Vishwanath Shukla;                                  | The Role Of Temporal Coherence In Small And Large-scale Dy- namos At High Rm Steven Tobias; Fausto Cattaneo                                                                                                                        | Finite-time Blow-up Problem And<br>The Maximum Growth Of Palin-<br>strophy<br>Bartosz Protas; Diego Ayala                                                 |
| Multipartide Dispersion In Homogeneous Isotropic Turbulence<br>Benjamin Devenish                                                                                                                    | Feed-forward Control In An Exper-<br>imental Channel Flow<br>Fabien JUILET; Beverley McKeon; Peter<br>Schmid                                                                                | Spectra In Gross-pitaevskii Turbu-<br>lence Within A Spectral Closure<br>Approximation<br>Kyo Yoshida; Toshihico Arimitsu                                                     | Global Bifurcations To Subcritical Turbulent Magnetorotational Dy- namo Action In Keplerian Shear Flow Flow Flow Fancois Rincon; Antoine Riols; Cało Cossu; Geoffroy Lesur; Pierre-Yves Longaretti; Gordon Ogilvie; Johann Herault | Dynamic Geometrical Analysis Of<br>High-enstrophy Structures In<br>Isotropic Turbulence<br>Yuji Hattori; Takashi Ishihara                                 |
| Deformation Of Tetrahedra In<br>Turbulence<br>Jennifer Mutschall; Haitao Xu; Alain Pumir,<br>Berhard Bodenschatz                                                                                    | Experimental Study Of Open- And Closed-loop Control Of A Turbulent Mixing Layer Vladimir Parezanovic, Jean-Charles Laureate; Carine Fourment, Joel Delville; Laurent Cordier, Bend R. Noack | Energy Spectra And Characteristic<br>Scales Of Quantum Turbulence In<br>vestigated By Numerical Simula-<br>tions Of The Two-fluid Model<br>Philippe-E Roche; Emmanuel Lévêque | Scaling Laws For Convective Dynamos Krzysztof Mizerski; Chris Jones                                                                                                                                                                | Statistics Of The Velocity Gradient Tensor Perceived By A Set Of Four Tracer Particles In Homogeneous Rotating Turbulence Aurore Naso, Fabien S. Godeferd |
| Statistics Of Velocity Differences Between Lagrangian Tracers In A  metric Turbulent Wake Using Developed Turbulent Flow Jerenie Bec; Rehab Bitane; Holger Homann Anthony Oxlade; Jonathan Morrison | Open-loop Control Of An Axisymmetric Turbulent Wake Using High -frequency Periodic Jet Blowing Anthony Oxlade, Jonathan Morrison                                                            | Nonlocal Model Of Superfluid Turbulence Lidia Saluto; David Jou; Maria Stella Mongionì                                                                                        | Turbuence In Geodynamo Simula-<br>tions<br>Nathanael Schaeffer; Alexandre Foumier;<br>Julien Aubert                                                                                                                                | Nonlocal Pressure Contributions To<br>The Small-scale Statistics Of Ho-<br>mogeneous Isotropic Turbulence<br>Midrael Wilczek; Charles Mereveau            |
|                                                                                                                                                                                                     |                                                                                                                                                                                             | COFFEE BREAK                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                           |

Coffee Break

## Monday, September 2, 16:45-23:00

|                                                                                                                                                                  |                                                                                                                                                           | MD.1-5                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                           | Room 2                                                                                                                                                    | Room 3                                                                                                                                                                                                      | Room 4                                                                                                                                                                                                                | Room 5                                                                                                        |
| MD.1 - PT6 (Particles) S. Chibbaro                                                                                                                               | MD.2 - ENG1 (Engineering) D. Tordella                                                                                                                     | MD.3 - RF (Reacting Flows)<br>M. Gorokhovski                                                                                                                                                                | MD.4 - MHD4 (MHD) A. Potherat                                                                                                                                                                                         | MD.5 - FA3 (Fundamental Aspects) B. Castaing                                                                  |
| Stokes Drift For Inertial Particles Transported By Water Waves Francesco Santamaria; Guido Boffetta; Marco Martins Afonso; Miguel Onorato; Andrea Mazzino        | The Structure Of The Near Wall Sublayer In Rotor/stator Non-isothermal Flows Kamil Ketzewski; Ewa Tuliszka-Sznitko                                        | Experimental Investigation Of Eddy Diffusivity In A Reactive Liquid Jet Tomoaki Watanabe; Yasuhiko Sakai; Kouji Nagata; Osamu Terashima; Yasumasa Ito                                                       | Hall Effects On Energy Transfer Of<br>Isotropic Mhd Turbulence<br>Hideaki Miura, Keisuke Araki                                                                                                                        | Generation Mechanism Of Hierar-<br>chy Of Coherent Vortices In Turbu-<br>lence<br>Susumu Goto; Genta Kawahara |
| The Slip Direction Of Large-size Particles In Turbulent Flows Mamadou Cisse; Holger Homann; Jeremie Bec                                                          | The Comparison Of Agmerical And Experimental Powerigation Of Flow Insign Neversing Chamber Robert Klosowak; Jaroslaw Bartoszewicz                         | The Comparison Of Momerical And Effective Rates In Dilute Reaction-  Experimental Constitution Of advection Systems Flow Inside Neversing Chamber  Gorgio Kistulovic Robert Kosowiak; Jaroslaw Bartoszewicz | Large Scale Forcing Of A Turbulent Plasma Dynamo Jorge Morales; Wouter Bos; Fabien Godeferd; Nicoles Pilhon                                                                                                           | Vorticity Moments For Thin And<br>Hollow Anti-parallel Vortex Tube<br>Robet Ken                               |
| Memory Effects In The Advection Of Inertial Particles Anton Daitche; Tamás Tél                                                                                   | Turbulent Flow Field Measure-<br>ments In A Fan-stirred Combus-<br>tion Vessel<br>Bénédicte Galmiche, Fabien Halter, Nicolas<br>Mazeller, Fabrice Foucher | Curvature And Velocity Strain Dependencies Of Burning Speed In A Turbulent Premixed Jet Flame Guido Troini; Francesco Bettsta; Francesco Picano; Carlo Massimo Casciola                                     | Developing Of The Ionospheric Plasma Turbulence Over The Epi- centers Of The Strong Earth- quakes. Discussion Of The Results Of The Demeter Satellite Malgorata Kosciesza; Jan Blecki; Michel Parrot; Roman Wronowski | Direct Vorticity Measurement In<br>Turbulence<br>Huixuan Wu; Haitao Xu; Eberhard Boden-<br>schatz             |
| Effect Of Turbulent Fluctuations On Targe-eddy Simulation Of Under-The Drag Force And Boundary Layer Of A Towed Sphere Holger Homann; Jérémie Bec; Rainer Grauer | Large-eddy Simulation Of Under-<br>expanded Natural Gas Jets<br>Ville Vuorinen; Christophe Duwig; Ossi<br>Kaario; Martti Larmi; Bendiks Boersma           | Turbulence-combustion Interac-<br>tion In H2-co/air Bunsen Flame<br>Francesco Battista, Francesco Picano; Guido<br>Troiani; Carlo Massimo Cascola                                                           | Effect Of Subgrid Scale Turbulence On Particle Acceleration In Solar Wind Turbulence Bemard Knaepen; Lapo Bettarini                                                                                                   | On Transition Via Transient Growth<br>In Couette Flow<br>Michael Karp; Jacob Cohen                            |

Free time

17:45-18:15

18:15-20:00

20:00-23:00

Guided walking tour of historical Lyon
Visit of the old city of Lyon. Departure from the conference site. The end of the tour will take you to the "Palais du Commerce" where the gala of the conference will take place.

Gala (Palais du Commerce) The ETC14 Gala will be held at:

Palais du Commerce place de la Bourse LYON 69002

## Tuesday, September 3, 8:30-11:15

|                                                                                                                                                                                          |                                                                                                                                                                                             | PLENARY SESSION 5                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plenary Session 5 - Beverly McKeon (Room 1) A Systems Approach To Wall Turbulence                                                                                                        | McKeon (Room 1)                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                |
|                                                                                                                                                                                          |                                                                                                                                                                                             | TA.1-5                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                |
| Room 1                                                                                                                                                                                   | Room 2                                                                                                                                                                                      | Room 3                                                                                                                                                            | Room 4                                                                                                                                                                                            | Room 5                                                                                                                                                                                         |
| TA.1 - FA4 (Fundamental Aspects)                                                                                                                                                         | TA.2 - PF3 (Pipe Flows) L Tuckerman                                                                                                                                                         | TA.3 - IT3 (Instability & Transition)                                                                                                                             | TA.4 - CONV3 (Convection) D. Furfschilling                                                                                                                                                        | TA.5 - ROT2 (Rotation)<br>C. Nore                                                                                                                                                              |
| Thin Shear Layers In High Reynold s Number Turbulence - Dns Results Takashi Ishihara; Julian Hunt; Yukio Kaneda                                                                          | Patterned Turbulence And Relaminarization In Mhd Pipe And Duct Flows Dmity Krasnov; Oleg Zikanov; Thomas Boeck                                                                              | Camassa-holm Type Equations An<br>d Vortexons In Axisymmetric<br>Poiseuille Pipe Flows<br>Francesco Fedele; Denys Dutykh                                          | Numerical Simulations Of Rayleigh -benard Systems With Non-homogeneous Temperature Sources Patrizo Ripesi; Luca Biferale; Mauro Sbragaglia; Achim Wirth                                           | The Effects Of System Rotation On<br>Kinematics Of Vortical Structure In<br>Turbulent Channel Flow<br>Oaki Iida                                                                                |
| Thin Shear Layers In High Reynolds Number Turbulence - A C oherent-structure Model Julian Hunt; Takashi Ishihara; Yukio Kaneda                                                           | Turbulent Pipe Flow: New Dns Data And Large-scale Structures George El Khoury, Philipp Schlatter; Geet Brethouwer; Ame V. Johansson                                                         | Secondary Flow Formation Over<br>Localized Heat Source<br>Andrey Sukhanovskiy; Anna Evgrafova;<br>Elena Popova                                                    | Measurement Of The Local Convective Heat Flux In Thermallydrive Turbulence With Rough Surfaces Yi-Chao Xie; Rui Ni; Xiao-Ming Li; Ping Wei; Ke-Qing Xia                                           | Dns Of Inhomogeneous Turbu-<br>lence Under Rotation<br>Avishek Ranjan; Peter A Davidson                                                                                                        |
| Properties Of The Curvature Tensor<br>Of Streamtubes In Turbulent Flows<br>Jonas Boschung; Charles Meneveau;<br>Norbert Peters                                                           | Coherent Motions In Turbulent Flows Through Curved Pipes Philipp Schlatter, Azad Noorani; Athanasia Kalpakli; Ramis Orlü                                                                    | Experimental Investigation Of<br>Gap Instability And Gap Vortex<br>Street Development In An Eccen-<br>tric Annular Channel<br>George Choueiri, Stavros Tavoularis | Towards The Numerical Investiga-<br>tion Of Rough Surfaces In Quasi<br>Two-dimensional Rayleigh-benard<br>Convection<br>Sebastian Wagner, Olga Shishkina                                          | Restoring Isotropic Universality In<br>Freely Decaying Rotating Turbu-<br>lence<br>DELACHE ALEXANDRE; CAMBON CLAUDE;<br>GODEFERD Fabien                                                        |
| The Effects Of Pressure Hessian On<br>Fluid Deformation<br>Yi Ü                                                                                                                          | Scalings Of The Outer Energy<br>Source Of Wall-turbulence<br>Andrea Cimarelli; Elsabetta De Angelis;<br>Philipp Schlatter; Geet Brethouwer;<br>Alessandro Talamelli; Carlo Massimo Casdola  | Bifurcations From Double-layered<br>Streamwise-independent Vortex<br>Flow In Rotating Plane Couette<br>Flow                                                       | The Effect Of Velocity Boundary Conditions On \$2d\$ Rayleigh- Benard Turbulence Rodolfo Ostilla Mónico; Erwin P. van der Poel ; Roberto Verzico; Detfef Lohse                                    | Direct Numerical Investigation Of The Stably-stratified Ekman Layer Errico Deusebio; Philipp Schlatter; Geet Brethouwer; Enk Lindborg                                                          |
| Comparison Between Prandtl, Navier-stokes And Euler Solutions For A Vortex Dipole Impinging On A Wall Romain Nguyen van yen; Matthias Waidmann; Marie Farge; Kai Schneider; Rupert Klein | The Evolution Of Transitional Flow Structures Along A 3200 D Pipe In The Decay And Growth Regimes Özgür Eturc; Jens Krauss; Hermann lenhart; Hannes Schweiger; Horst Weber; Antonio Delgado | Stabilizing Effect Of Longitudinal Wall Oscillation On 2d Or 3d Wave In The Plane Poiseuille Flow Takashi Atobe                                                   | Roughness-enhanced Heat-flux In<br>Turbulent Thermal Convection Julien Salort; Éléonore Rusaouën; Olivier Liot ; Jean-Christophe Tisserand; Mathieu Creyssels; Bernard Castaing; Francesca Chillà | Scale-dependent Statistics Of<br>Lagrangian And Eulerian Accelera-<br>tion In Rotating And Sheared Ho-<br>mogeneous Turbulence<br>Frank G. Jacobizz, Kai Schneider, Wouter<br>Bos; Marie Farge |
|                                                                                                                                                                                          |                                                                                                                                                                                             | COFFEE BREAK                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                                                                                                                |
| Coffee Break                                                                                                                                                                             |                                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                |

Tuesday, 3 September 2013

9:30-10:45

## Tuesday, September 3, 11:15-15:10

|                                                                                                                                                                                      |                                                                                                                                                              | TB.1-5                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                                               | Room 2                                                                                                                                                       | Room 3                                                                                                                                                           | Room 4                                                                                                                                                                                      | Room 5                                                                                                                                                      |
| TB.1 - FA5 (Fundamental Aspects)                                                                                                                                                     | <b>TB.2 - CTL3 (Control)</b><br>G. Balarac                                                                                                                   | TB.3 - IT4 (Instability & Transition) F. Fedele                                                                                                                  | TB.4 - CONV4 (Convection) F. Chilla                                                                                                                                                         | <b>TB.5 - GAF3 (Geo - Astro)</b><br>S. Berti                                                                                                                |
| The Lack Of Return To Isotropy In Decaying, Axisymmetric, Saffman Turbulence Peter Davidson; Naoya Okamoto; Yukio Kaneda                                                             | Reduction Of Turbulent Wall Friction By Spinning Discs Pierre Ricco; Stanislav Hahn                                                                          | Stewartson Layer Instability In<br>The Problem Of The Vibrational Hy<br>drodynamic Top<br>Viktor Kozlov, Nikolai Kozlov; Stanislav<br>Subbotin                   | Ultimate Rayleigh-bénard And<br>Taylor-couette Turbulence<br>Detlef Lohse; Siegfried Grossmann; Sander<br>Huisman; Rodolfo Ostilla Monico; Erwin van<br>der Poel; Chao Sun; Richard Stevens | Transition To Turbulence In Strati-<br>fied Shear Flow Through An<br>Inclined Square Duct<br>Colin R. Meyer, Paul F. Linden                                 |
| Experimental And Computational Investigation Of A Fractal Grid Wake Wided Medjroubi; Hannes Hochstein; Andre Fuchs; Gerd Gülker; Joachim Peinke                                      | Experimental Investigation Of Nanosecond Plasma Actuators Effect On A Subsonic Jet Noise Jean-Charles Laurentie; Peter Jordan; Nicolas Benard; Joel Delville | Bi-stability Of The Turbulent Wake Past Parallelepiped Bodies With Various Aspect Ratios And Ground Effect Mathieu Grandemange; Marc Gohlke; Olivier Cadot       | Temperature Fluctuations Near The Ultimate-state Transition In T urbulent Thermal Convection Xaozhou He; Dennis van Glis; Eberhard Bodenschatz; Guenter Ahlers                              | A Forced Dissipated Perspective On The Ocean Mesoscale Turbu- lence Gullaume Roullet; Xavier Capet; Radjesvarane Alexandre                                  |
| Breakdown Of Kolmogorov's Scal-<br>ing In Grid Turbulence<br>Lyazid Djenidi; Robert Antonia; Sedat Tardu                                                                             | Symmetries In The Turbulent Wake Of A Sphere Marc Gohlke; Mathieu Grandemange; Olivier Cadot                                                                 | Three Helical Vortices: Dynamics And Instability Maurice Rossi; Ivan Delbende                                                                                    | Logarithmic Mean Temperature Profiles In Rayleigh-bénard Convection Simulations Ewin van der Poel; Rodolfo Ostilla Mónico; Siegfried Grossmann; Detlef Lohse                                | Pair Dispersion In Atmospheric<br>Boundary Layers<br>Irene Mazzitelli; Aessandra Larotte;<br>Francesco Fomarelli; Paolo Oresta                              |
| Experimental Study Of Isotropic<br>Turbulence Under Time-dependent<br>Forcing<br>Fabio Di Lorenzo; Haitao Xu; Eberhard Bodenschatz                                                   | Skin-friction Drag Reduction - Now With Reinforced Passive Control Sohrab S. Sattarzadeh; Jens H. M. Fransson ; Bengt E. G. Fallenius; Alessandro Talamelli  | Absolute Instabilities In Eccentric Taylor-couette-poiseuille Flow Coin Ledera; Benot Per, Julian Scott                                                          | Characterization Of Large Scale<br>Quantities And Energy Spectrum<br>For Very Large Prandtl Numbers<br>Ambrish Pandey; Mahendra Kumar Verma                                                 | Direct Numerical Simulation Of<br>Laminarization In The<br>Atmospheric Boundary Layer<br>Judith Donda, Bas Van de Wiel; Get-Jan<br>Van Heijst; Herman Gercx |
| Reynolds Number Dependencies<br>In Classical Grid Turbulence<br>Michael Sinhuber, Gregory P. Bewley; Bo-<br>denschatz Eberhard; Margit Vallkivi; Marcus<br>Hultmark; Alexander Smits | Lattice Boltzmann Simulations Of<br>Drag Reduction By Super-hy-<br>drophobic Surfaces<br>Amirreza Rastegan; Rayhaneh Akhavan                                 | Experimental Study Of Distributed Receptivity Coefficients At Excitation Of Goertler Modes By Freestream Vortices Adnrey Ivanov; Yury Kachanov; Dmitry Mischenko | Local Boundary Layer Heat Transport In Turbulent Rayleigh-B enard Convection Ronald du Puits; Li Ling; Christian Resagk; André Thess                                                        | Well Resolved Measurements Of<br>The Turbulent Fluxes In The At-<br>mospheric Surface Layer<br>Macus Hultmark; Gilad Awatz; Margit<br>Valikivi              |
| Spectal Dimension Of Fractal Clusters In Turbulent Flows<br>Michael Wilkinson                                                                                                        | Influence Of Liquid-gas Interface Dynamics In Superhydrophobic Surfaces For Drag Reduction Jongrnin Seo; Ricardo García-Mayoral; All Mani                    | Relative Periodic Edge Orbits In<br>Plane Channel Flow<br>Subhandu Rawat; Carlo Cossu; François<br>Rincon                                                        | Prandti Number Dependence Of Statistics In Turbulent Rayleigh-B enard Convection Mohammad Emran; Nan Shi; Jörg Schumacher                                                                   | Detailed Inner Structure Of Double -diffusive Intrusions Takashi Noguchi; Hiroshi Niino                                                                     |
| W 11 11 17 17 17 17 17 17 17 17 17 17 17                                                                                                                                             |                                                                                                                                                              | LUNCH                                                                                                                                                            |                                                                                                                                                                                             |                                                                                                                                                             |
| Lunch (Lunch Hall)                                                                                                                                                                   |                                                                                                                                                              | PLENARY SESSION 6                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                             |
| Plenary Session 6 - Axel Brandenburg (Room 1)                                                                                                                                        | ndenburg (Room 1)                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                             |

## Tuesday, September 3, 15:15-17:00

|                                                                                                                                                                                  |                                                                                                                                                                                            | TC.1-5                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                                           | Room 2                                                                                                                                                                                     | Room 3                                                                                                                                                            | Room 4                                                                                                                                                         | Room 5                                                                                                                                                                                                                           |
| TC.1 - PT7 (Particles)<br>M. Cencini                                                                                                                                             | TC.2 - BL5 (Boundary Layers) S. Tardu                                                                                                                                                      | TC.3 - NUM1 (Numerics) E. Leveque                                                                                                                                 | <b>TC.4 - MHD5 (MHD)</b><br>F. Rincon                                                                                                                          | TC.5 - GAF4 (Geo-Astro)<br>P. Odier                                                                                                                                                                                              |
| Acceleration Statistics Of Light Particles In Turbulence Week N. Prakash; Yoshiyuki Tagawa; Enrico Calzavaini; Julian Matinez Mercado; Federi- co Toschi; Detlef Lohse; Chao Sun | Direct Numerical Simulation Of<br>Roughness And Unsteady Wake<br>Effect On Separated Boundary<br>Layers<br>Ayse G. Gungor, Mark P. Simens                                                  | Large-eddy Simulation Of Channel<br>Gas-particle Flow Induced By Wall<br>Injection With Forced Pressure<br>Oscillations<br>Konstantin Volkov; Vladislav Emelyanov | Turbulence In The Magne-<br>tostrophic Regime<br>Simon Cabanes; Hent-Claude Nataf;<br>Nathanael Schaeffer                                                      | Sidewall Effects In Confined Turbulent Rotating Rayleigh-bénard Convection Rudie Kunnen; Yoarn Corre; Hernan Gercx                                                                                                               |
| Dynamics Of Large Particles In A von Kármán Swirling Flow Nathanaeil Machicoane; Lionel Flabane; Robert Zimmermann; Jean-François Pinton; Mickael Bourgoin; Romain Volk          | Phase Dependency Of Near-wall<br>Streamwise Vortices And Associat-<br>ed Reynolds Shear Stresses Close<br>To Spanwise Oscillating Wall<br>Alko Yakeno; Yosuke Hasegawa; Nobuhide<br>Kasagi | Study Of Flow Instability Due To<br>Streamwise Inter-rod Gapping<br>Kristin Newlands; Shuisheng He;<br>Yakun Guo                                                  | Vortex Generation By Magnetic Dipole Field In A Liquid Metal Duct Flow Saskia Tympel; Thomas Boeck; Dmitry Krasnov; Jörg Schumacher                            | Tornado-like Vortices Generation Due To Air Turbulent Convection Aleksei Varaksin; Michael Romash; Viktor Kopeltsev                                                                                                              |
| Experimental Study Of Large Suspended Anisotropic Particles In Turbulence Gabriele Bellani; Evan A. Variano                                                                      | Turbulent Flow Over Superhydrophobic Surfaces - Roughness Versus Slip<br>Angela Busse; Neil Sandham                                                                                        | Numerical Von Kârmàn Flow Forcing By Two Rotating Propeller Using Penalization Method Yannick Ponty; Sebastian Kreuzahler; Holger Homann; Rainer Grauer           | Direct Numerical Simulation Of<br>Spanwise Lorentz Force Oscilla-<br>tions In Turbulent Channel Flow At<br>Low Reynolds Number<br>Atila Atintas; Lars Davidson | An Experimental Study Of Baro-<br>clinic Wave Transitions In A Differ-<br>entially Heated Rotating Annulus<br>With Sloping Bottom Topography<br>Mikos Vince; Uwe Harlander, Christoph<br>Egbers; Thomas von Lardher              |
| Direct Numerical Simulation Of Algae Migration In A Lake Evelyn Aparioo Medrano; Bas van de Wiel; Rob Uittenbogaard; Herman Gercx                                                | rime-resolved Evolution Of Wall-b<br>ounded Direct And Inverse Cas-<br>cades In Turbulent Channels At Re<br>=4000<br>Adrián Lozano-Durán; Javier Jiménez                                   | A Subgrid-scale Model For Les<br>Based On The Physics Of Inter-<br>scale Energy Transfer In Turbu-<br>lence<br>Julian Andrzej Domaradzki; Brian Wayne<br>Anderson | A New Spectral Method For Direct Numerical Simulations Of Magne- tohydrodynamic Channel Flows Kacper Komet, Alban Potherat                                     | Cell Formation In Thin Spherical Shells With Lateral Temperature Gradient Between Polar And Equatorial Regions. Onistoph Egbers; Rorian Zaussinger                                                                               |
| Lagrangian Conditional Statistics Of Inertial Particle Flows Sergio Chibbero; Cristian Marchioli; Maria Vittoria Salvetti; Alfredo Soldati                                       | Experimental Investigation Of<br>Heat Transfer Over Drag-reducing<br>Riblets<br>Mathieu Creyssels; Christian Nicot                                                                         | Numerical Modeling Of Synthetic T<br>urbulence Generation By Using Zo<br>nal Rans/les Method<br>Allbek Issakhov                                                   | Effect Of Transverse Magnetic Field On Stability Of Plane Poiseuille Magnetohydrodynamic Flow Vivek Subrananiam; Pranav Kamat; Sameen A                        | Entraining Structures In Laborato-<br>ry Analog Of Clouds: Temperature<br>Inversion And Overshooting Up-<br>drafts<br>Anna Görska; Szymon Malinowski; Slawomir<br>Bloński; Tomazz Kowalewski; Plotr Korczyk;<br>Wojciech Kurnala |

**Coffee Break** 

## Tuesday, September 3, 17:00-18:45

| Room 1                                                                                                                                                                                                                                                                                      | Room 2                                                                                                                                                    | Room 3                                                                                                                                                                                           | Room 4                                                                                                                                                                                                 | Room 5                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <b>TD.1 - PT8 (Lagrangian)</b><br>E. Calzavarini                                                                                                                                                                                                                                            | <b>TD.2 - BL6 (Boundary Layers)</b><br>R.B.Cal                                                                                                            | <b>TD.3 - CT2 (Compressible)</b><br>A. Kritsuk                                                                                                                                                   | TD.4 - NNF2 (Non-Newtonian)<br>H. Xu                                                                                                                                                                   | TD.5 - TH1 (Theory)<br>M. Wilczek                                                                                                            |
| Numerical Investigations Of Collid-<br>ing Particles In Spatially Decaying<br>Turbulence<br>Christoph Slewert, Rudie Kunnen; Matthias<br>Menke; Wolfgang Schröder                                                                                                                           | Direct Numerical Simulation Of<br>Turbulent Wall Flows At Constant<br>Power Input<br>Yosuke Hasegawa; Bettina Frohnapfel;<br>Maurizio Quadno              | Dsmc Simulation Of Transition And<br>Turbulent Flow In A Lid-driven<br>Cavity At High Mach Number<br>Sahadev Pradhan; Viswanathan Kumaran                                                        | Contravariant And Covariant Polymer Dumbbells In Non-affine Vis-coelastic Turbulence Kyosi Horuti; Shohe Takeu                                                                                         | Finite Reynolds Number Effects On<br>Pressure In Freely Decaying<br>Isotropic Turbulence<br>Marcello Meldi, Perre Sagaut                     |
| Dispersion Of Particles From Local-<br>ized Sources In Turbulence<br>Riccardo Scatamachia; Luca Biferale;<br>Alessandra Sabina Lanotte                                                                                                                                                      | The Geometry Of The Turbulent-<br>non-turbulent Interface Layer In<br>Boundary Layers<br>Gullem Borrell, Jiménez Javier                                   | Artificial Turbulization Of The Supersonic Boundary Layer By Dielectric Barrier Discharge Pavel Polivanov; Andrey Sidorenko; Anatoly Maslov                                                      | Friction Factor For Turbulent Flows Of Herchel-bulkley Fluids In Rough Pipes Daniel Cruz; Atila Freire                                                                                                 | The Dynamics Of Pressure In<br>Planar Turbulent Flows: Flow Sta-<br>bility And Modeling<br>Aechwin Mistra; Sharath Girinaji                  |
| Effective Diffusion And Dispersion Of Inertial Particles In Flowing Fluids Marco Martins Aforso; Andrea Mazzino; Paolo Muratore-Ginanneschi                                                                                                                                                 | Off-wall Boundary Conditions For<br>Bounded Turbulent Flow Simula-<br>tions<br>Ricardo Garcia-Mayoral; Brian Pierce; James<br>Wallace                     | Experimental Investigation Of Effect Of Ultrasonically Absorptive Coating Length On Second Mode Disturbances In Hypersonic Boundary Layer Sergey Lukashevich; Sergey Morozov; Aleksandr Shiplyuk | Relevant Terms For Large-eddy Simulations Of Viscoelastic Isotropic Turbulence Antonio Mosca; Carlos B. da Silva; Femando T. Pinho; Pedro Valente                                                      | Prediction Of Low-frequency Trail-<br>ing Edge Noise Using Rapid Distor-<br>tion Theory<br>Mohammed Afsar, Marvin Goldstein; Stewart<br>Leib |
| Long Separation Times Between<br>Particles And Limitation Of The<br>Ghost Collision Approximation<br>Mchel Voßkuhle; Alain Pumir, Emmanuel<br>Lévêque                                                                                                                                       | Dns Of Turbulent Flow With Temporal Acceleration Yongmann Chung                                                                                           | Reverse Of Laminar-turbulent Transition In A Supersonic Underexpanded Microjets Sergey Mironov; Vladimir Aniskin; Anatoly Maslov; Ivan Tsyryulnikov                                              | Influence Of A Strongly Shear-<br>thinning Rheology On Nonlinear<br>Waves With A 3-fold Rotational<br>Symmetry In Pipe Flow: Asymp-<br>totic Regime<br>Emmanuel Plaut; Nicolas Roland;<br>Cherif Nouar | Comprehensive Realizability Of<br>Pressure Strain Correlation Models<br>Sharath Girimaji; Aashwin Mishra                                     |
| Breakup Of Small Aggregates In<br>Bounded And Unbounded Turbu-<br>lent Flows<br>Matthäus Bäbler; Luca Bifeale; Luca Brandt;<br>Ulrike Feudel; Ksenia Guseva; Alessandra<br>Lanotte; Cristian Marthioli; Eros Peode;<br>Francesco Picano; Sardin Getano; Alfredo<br>Soldati; Toschi Federico | On The Effects Of Porous Walls On<br>Transitional And Turbulent Chan-<br>nel Flows<br>Mauritio Quadrio; Marco Rosti; Davide<br>Scarselli; Luca Cortelezzi | Turbulence In A Rotor/stator Cavity In The Vicinity Of The Critical Point Of Sf6 Gautier Vertille, Cécile Lachize; Patrice Le Gal                                                                | Elastic-turbulence-induced Melting<br>Of A Nonequilirium Vortex<br>Crystal In A Forced Thin Fluid Film<br>ANUPAM GUPTA; RAHUL PANDIT                                                                   | On Pseudo Self-similar Regimes In<br>Isotropic Turbulence Decay<br>Pierre Sagaut, Marcello Meldi                                             |
|                                                                                                                                                                                                                                                                                             | Velocity Level Crossing Statistics<br>In Wall Bounded Turbulent Flows<br>Sedat Tardu; Frédéric Bauer                                                      | Effect Of Compressibility On The Merging Of Shielded Vortices Ravindra Shende; Sameen A.                                                                                                         | On The Peterlin Approximation For Turbulent Flows Of Polymer Solutions Luca Biferale, Prasad Perlekar, Federico Toschi; Dario Vincerzi                                                                 | What Rdt Tells Us About T/nt<br>Interfaces<br>Mguel Teixeira; Carlos Silva                                                                   |
|                                                                                                                                                                                                                                                                                             | Extended Theory Of Oil Film Inter-<br>ferometry For Skin Friction Mea-<br>surement<br>Antonio Segalini; Peter Monkewitz;<br>Jean-Daniel Rüedi             |                                                                                                                                                                                                  |                                                                                                                                                                                                        | On The Strength Of The Non-<br>linearity In Isotropic Turbulence<br>Robert Rubinstein; Wouter Bos                                            |

## Wednesday, September 4, 8:30-11:15

| Wednesday, 4 | Wednesday, 4 September 2013                                                                                                                              |                                                                                                                                               |                                                                                                                                         |                                                                                                                                                        | đ                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8:30-9:25    |                                                                                                                                                          |                                                                                                                                               | PLENARY SESSION 7                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                                  |
|              | Plenary Session 7 - Roberto Camussi (Room Application Of Time-frequency Tools In Aeroacoustics                                                           | Camussi (Room 1)                                                                                                                              |                                                                                                                                         |                                                                                                                                                        |                                                                                                                                                                                  |
| 9:30-10:45   |                                                                                                                                                          |                                                                                                                                               | WA.1-5                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                                                  |
|              | Room 1                                                                                                                                                   | Room 2                                                                                                                                        | Room 3                                                                                                                                  | Room 4                                                                                                                                                 | Room 5                                                                                                                                                                           |
|              | WA.1 - TC1 (Taylor-Couette) D. Lohse                                                                                                                     | WA.2 - STR1 (Stratification) A. Venaille                                                                                                      | WA.3 - CRYO3 (Cryogenics) P. Rodre                                                                                                      | WA.4 - PSM1 (Passive Scalar & Mixing) J. Lemay                                                                                                         | WA.5 - ROT3 (Rotation) C. Cambon                                                                                                                                                 |
|              | The Basic Physics Of The Linear<br>Transient Growth In Plane Shear<br>Flows<br>George Chagelisvhill; Jan-Niklas Hau;<br>George Khujadze; Martin Oberlack | Energy Transfer In Stratified<br>Turbulence<br>Stefano Musacchio; Guido Boffetta; Paolo<br>Muratore-Ginanneschi                               | Interplay Of Laminar And Turbu-<br>lent Dynamics In Helium<br>Superfluids<br>Vadimr B. Etsov; Samuli Autti; Matti Krusius               | Budgets Of Turbulent Kinetic Energy And Scalar Variance In The Self-similar Region Of A Round Jet Jean Lemay; Azemi Benaissa; Alexis Darisse           | Experimental And Numerical Study Of Oscillating Grid Turbulence Subjected To System Rotation Yohei Moninishi; Zhixiang Liu; Toshiki Nagao; Shiriji Tamano                        |
|              | Turbulent Bursts And Torque Maxima In Taylor-couette Flow Hannes J. Brauckmann; Bruno Eckhardt                                                           | Explicit Algebraic Models For<br>Turbulent Flows With Buoyancy<br>Effects<br>Wener Lazeroms; Geet Brethouwer, Stefan<br>Wallin; Ame Johansson | Energy And Geometry Of A Tangle<br>Of Vortex Filaments<br>Lucy Shewin; Andrew Baggaley; Carlo<br>Barenghi                               | Passive Scalar Mixing: Turbulence<br>Versus Chaotic Advection.<br>Benjamin Kadoch; Wouter Bos; Kai<br>Schneider                                        | Experimental Investigation Of<br>Large-scale Non-decaying<br>Rotating Turbulence<br>Lian Gan; Yasir B. Baqui; Peter A. Davidson;<br>Per-Aage Krogstad; James R. Dawson           |
|              | Pockets Of Turbulence In Plane<br>Couette Flow<br>Tobias Kreilos, Bruno Eckhardt, Tobias M<br>Schneider                                                  | Vortex Structures Of 3d Separated<br>Flows Of Stratified Viscous Fluid<br>Pavel Matyushin; Valentin Gushchin                                  | Superfluid Turbulence, Vortex<br>Dynamics, And Universaility In<br>Ultracold Bose Gases<br>Markus Kart, Boris Nowak; Thomas<br>Gasenzer | Turbulence Induced Coarsening Arrest In Spinodal Decomposition Federico Toschi; Roberto Benzi; Herman Gercx; David R. Nelson; Prasad Perlekar          | Which Scales Are More Anisotropic<br>In Rotating Turbulence?<br>Perre-Philippe Cortet; Frédéric Moisy                                                                            |
|              | Symmetry Related Slow Processes<br>In Parallel Shear Flows<br>Buno Eckhardt, Tobies Kreilos                                                              | On The Evolution Of Full-field Stratified Turbulence Andrea Maffioli, Peter Davidson; P.K. Yeung                                              | Superfluids And Implications In<br>Quantum Turbulence<br>Sophie Villerdt; Bernard Castaing; Laurent<br>Chevillard                       | Experimental And Numerical Study Of Chaotic Mixing In A Curved-square Duct Flow Yasutaka Hayamizu; Shinichiro Yanase; Kazunori Nishida; Kyoji Yamamoto | Energy Transfers In A Forced<br>Homogeneous Turbulence<br>Experiment Under Rotation<br>Antoine Campagne; Basile Gallet; Paul Billant<br>; Frédéric Moisy; Pierre-Philippe Cortet |
|              |                                                                                                                                                          | Spectral Analysis Of The Transition To Turbulence From A Dipole In Stratified Fluid Jean-Marc Chomaz, Pierre Augier; Paul                     | Reconnections Of Quantum<br>Vorices<br>Konrad Bajer, Miron Kursa; Tomasz Lipniacki                                                      | Experimental Investigations On<br>Mixing Evaluation In Non-circular<br>Sharp Edge Nozzles<br>Govanni Romano; Adel Hashiehbaf                           | The Near Wake Of A Square<br>Cylinder Under The Effect Of<br>Coriolis Forces<br>Ignacio Mayo, Filippo Coletti, Tony Arts                                                         |

**Coffee Break** 

## Wednesday, September 4, 11:15-15:10

|                                                                                                                                                                              |                                                                                                                                                                                                              | WB.1-5                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Room 1                                                                                                                                                                       | Room 2                                                                                                                                                                                                       | Room 3                                                                                                                                                                      | Room 3                                                                                                                                                                                                                   | Room 5                                                                                                                                                              |
| WB.1 - TC2 (Taylor-Couette)<br>B. Eckhardt                                                                                                                                   | WB.2 - ENG2 (Engineering) N. Mazzeler                                                                                                                                                                        | WB.3 - JET2 (Jets)<br>R. Antonia                                                                                                                                            | WB.4 - CONV5 (Convection)<br>R. du Puits                                                                                                                                                                                 | WB.5 - TH2 (Theory)<br>S. Girinaji                                                                                                                                  |
| Optimal Taylor-couette Turbulence<br>Chao Sun; Dennis P. M. van Gis; Sander G.<br>Huisman; Siegfried Grossmann; Detlef Lohse                                                 | A K-e- VZ-f Model For Turbulent Fl<br>ow Of Dilute Polymer Solutions Up<br>To The Maximum Drag Reduction<br>Mohammadail Masoudian; Kyoungyoun Kim<br>; Femando Tavares de Pinho;<br>Radhakrishna Sureshkumar | Near Field Round Jet Flow Downstream From An Extended Abrupt Contraction Nozzle Annemie Van Hirtum; Xavier Grandchamp                                                       | Turbulent Convection In Bounded Vertical Layers Peter Frick; Andrey Teymurazov; Andrey Vasilev                                                                                                                           | On The Role Of Helicity In The Three-dimensional Navier-stokes Equations Luca Biferale; Stefano Musacchio; Titi S. Edriss; Federico Toschi                          |
| Experiments On The Cuset Of Sub-<br>critical Turbulence of Shear Flows<br>Kerstin Avila: Ref. Sheffen; Bjoem Hof                                                             | Characterization Of Wake Dynamics Via Proper Orthogonal Decomposition For Varying Wind Farm Arrangements Nicholas Hamilton; Murat Tutkun; Raul Bayoan Cal                                                    | Volumetric Investigation Of Vortex Pairing In A Wall Jet In Air David Hess, Christoph Skupsch; Jens Kizhofer, Christoph Brücker                                             | Energy Dissipation Rate, Velocity<br>Correlation Function And Structure<br>Functions In Turbulent Rayleigh-B<br>énard Convection With Polymer A<br>dditives<br>Ke-Qing Xia; Rui Ni; Xiao-Ming Li; Ping Wei               | Vorticity Statistics And The Time<br>Scales Of Turbulent Strain<br>Luca Moriconi; Rodrigo Pereira                                                                   |
| Torque Measurements In A Wide<br>Gap Taylor-couette Flow<br>Sebasban Merbold; Christoph Egbers                                                                               | Robust Real-time Estimation Of<br>The State Of The Flow Past A Back<br>ward-facing Step<br>Nicolas Gautier, Jean-Luc Aider                                                                                   | Experimental And Numerical Study Of The Turbulent/non-turbulent Interface In A Turbulent Round Jet Flow Konstantin Kleinheirz; Markus Gampert; Heirz Pitsch; Norbert Peters | Influence Of The Stratification On The Turbulent Convective Flow In A Tifted Channel Eléonore Rusaouën; Xavier Riedinger; Jean-Christophe Tisserand; Fanny Seychelles; Julien Salort; Bernard Castaing; Francesca Chillà | Instanton Filtering For The Stochastic Burgers Equation Tobias Grafke; Rainer Grauer; Tobias Schaefer                                                               |
| Velocity And Front Velocity Measurements In Experimental Plane<br>Couette Flow<br>Marie Couliou; Romain Monchaux                                                             | On The Low-frequency Behaviour Of The Laminar Separation Bubble On A Naca 0012 Near Stall Oriol Lehmkuh; Ivette Rodriguez; Ricard Borrel; Assersi Oliva                                                      | Buoyancy Effects In Turbulent Jet<br>Mixing<br>Sergiy Gerashchenko; Kathy Prestridge                                                                                        | The Geostrophic Regime Of Rotating Rayleigh-bènard Convection Robert Ecke, Scott Backhaus                                                                                                                                | Functional Renormalization-group Approach To Decaying Turbulence Andrel Fedorenko; Pierre Le Doussal; Kay Wiese                                                     |
| On The Discontinuous Transition To<br>Turbulence In Plane Couette Flow<br>Paul Manneville                                                                                    | Cavity Flows: Change Of Regime In The Ratio Between The Pressure And Kinetic Energy Flows Across The Cavity Mouth. Antonella Abbà; Peter Roger Bailey; Daniela Tordella                                      | Analysis O F Jet-jet Interaction Of Multiple Impinging Jet Using Dns Takahiko KOIDE; Koichi TSUJIMOTO; Toshihiko SHAKOUCHI; Toshitake ANDO                                  | Mixed Convection In A Rayleigh-B<br>enard Cell With An Imposed Mean<br>Wind<br>Andrea Scaglaini; Amann Gylfason;<br>Federico Toschi                                                                                      | Renormalization Of The Fragmentation Equation: Exact Self-similar Solutions And Turbulent Cascades Vadimir Leonidovich Savellev; Mikhail Arkadievich Gorokhovski    |
| Symmetry Of Vortices In Transition Of Plane Couette Flow At Moderate Reynolds Number Tomoski Itano; Sotos Genealis; Takahiro Ninomiya; Takeshi Akinaga; Masako Sugihara-Seki | Experimental Investigation On 3d<br>Lagrangian Coherent Structures In<br>The Left Ventricle<br>Maria Grazia Badas; Stefania Espa; Stefania<br>Fortini; Gorgio Querzoli                                       | Variable-viscosity Mixing In The<br>Very Near Field Of A Round Jet<br>Léa Voivenel; Benoît Talbot; Luminita<br>Danaila                                                      | Vortex Identification In Rotating Turbulent Rayleigh-bÉnard Convection Of Water Susanne Hom; Olga Shishkina; Caus Wagner                                                                                                 | Energy And Helicity Spectra In The<br>Shell Model With Distributed Helici-<br>ty Injection<br>Alexander Shestakov; Ephim Golbraikh;<br>Rodion Stepanov; Peter Frick |
|                                                                                                                                                                              |                                                                                                                                                                                                              | LUNCH                                                                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                     |
| Lunch (Lunch Hall)                                                                                                                                                           |                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                     |

Fnu

12:45-14:15

PLENARY SESSION 8

Plenary Session 8 - Arne Johansson (R00m 1) Dns And Modeling Of Structures, Complexities, Fibres And Rotational Effects In Turbulent Channel Flow

14:15-15:10

## Wednesday, September 4, 15:15-17:00

| Room 1                                                                                                                                                                                                             | Room 2                                                                                                                                        | Room 3                                                                                                                                           | Room 4                                                                                                                                                                                                | Room 5                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WC.1 - EXP1 (Experiments) G. Bewley                                                                                                                                                                                | WC.2 - NUM2 (Numerics)<br>F. Toschi                                                                                                           | WC.3 - IT5 (Instability & Transition) P. Manneville                                                                                              |                                                                                                                                                                                                       | WC.4 - PSM2 (Passive Scalar & WC.5 - WT2 (Wave Turbulence) Mixing) J. Laurie                                                                                                                     |
| Accuracy Of Wall-shear Stress<br>Measurements Using Micro-pillars<br>Bemardo Nottebrock; Wolfgang Schröder                                                                                                         | Underresolved Turbulence Simulations With Stabilized High-order Discontinuous Galerkin Methods Andrea Beck; Gregor Gassner; Claus-Dieter Murz | Weakly-nonlinear Instability Development In A Sharply Stratified Shear Flow With An Inflection-free Velocity Profile Senyon Churlov              | Experimental Scalar Spectra In<br>Chaotic Advection<br>Cyrll Mauger, Nathanaël Machicoane; Mick-<br>aël Bourgoin; Romain Volk; Florence Raynal                                                        | Spatiotemporal Investigation Of<br>Capillary Wave Turbulence:<br>Hypothesis Of Weak Nonlinearity<br>Under Scrutiny<br>Michael Berharu; Eric Falcon                                               |
| Experiments With Super-miniature Hot-film Probe For Sub-kol-mogorov Resolution In High-Reyn olds-number Turbulence Youry Borisenkov; Michael Kholmyansky; Slava Krylov; Alexander Liberzon; Arkady Tsinober        | An Explicit Algebraic Subgrid-scale<br>Scalar Variance Model<br>Anin Rasam; Zeinab Pouransan; Luc<br>Vervisch; Ame V. Johansson               | Effects Of Freestream Turbulence On Crossflow Instability Seyed Mohammad Hosseini; Ardeshir Hanfi ; Dan Henningson                               | Scalar Gradient Statistics In<br>Isotropic Turbulence In The Pres-<br>ence Of A Mean Scalar Gradient<br>Wouter Bos                                                                                    | Direct Numerical Simulations Of Capillary Wave Turbulence Luc Deike, Daniel Fuster, Michael Berhanu; Eric Falcon                                                                                 |
| Measurement Of Fine Scale Structure In Turbulence By Quad-plane Stereoscopic Piv Yoshisaya Naka; Kenichi Tomita; Masayasu Shimura; Naoya Fukushima; Mamoru Tanahashi; Toshio Miyauchi                              | A Mixed Multiscale Dynamic Sgs<br>Model Accounting For The<br>Cross-term<br>Olivier Thiry; Grégoire Winckelmans                               | Direct Numerical Simulations Of<br>Tilted Rayleigh-taylor Instability<br>Dariel Livescu; Tie Wei                                                 | Measurement And Analysis Of In-<br>cremental Averages Of Passive<br>Scalar Statistics In Grid Turbulence<br>Laurent Mydarski; Colin Meyer;<br>Luminita Danaila                                        | Flow Topology In Drift-wave<br>Turbulence<br>Diego de-Casillo-Negrete; Benjamin<br>Kadoch; W.J.T. Bos; Kai Schneider                                                                             |
| Using Dns To Compare The Performance Of Virtual Hot-wire Probe Sensor And Array Configurations For Simultaneous Measurement Of The Velocity Vector And Velocity Gradient Tensor Petar Vukoslavčavíc; James Wallace | Numerical Simulation Of Turbulent Channel Flow With Synthetic Wall Boundary Conditions Berengere Podvin; Yann Fraigneau                       | About The Nature Of A Secondary Phenomenon Inside A Cavity Shear Flow Christele Douay; Luc Pastur, François Lusseyran                            | Signature Of Salt-induced Diffusion Of Particles In A Turbulent Water Jet Nathanael Machicoane; Cyril Mauger; Romain Volk; Mickaël Bourgoin; Cecile Cottin-Bizonne; Christophe Ybert; Florence Raynal | Numerical Investigation of The Role Of Dissipation In Flexural Wave Turbulence: From Experimental Spectra To Kolmogorov-zakharov Scalings Benjamin Miquel; Alexandros Alexakis; Nicolas Mordant. |
| Control Of Turbulence With A High<br>Degree-of-freedom Active Grid<br>Gregory Bewley; Johannes Kassel; Eberhard<br>Bodenschalz                                                                                     | Large-eddy Simulation Of Turbu-<br>lent Flows On Composite Multi-<br>resolution Grids By The Lattice<br>Boltzmann Method<br>Hatem Touil       | Stability Analyses Of Flow<br>Through An Aneurysm: Steady<br>And Pulsatile Flows<br>Shyam Sunder Gopalakrishnan; Benoit Pier,<br>Arie Biesheuvel | Dispersion Of A Scalar Puff In Turbulence: Theory And Experiment Entico Calzavarini; Willem van de Water                                                                                              | New Aspects Of Energy Transfer In Charney-hasegawa-mimawave Turbulence Brenda Quinn; Miguel Bustamante; Colm Connaughton                                                                         |
|                                                                                                                                                                                                                    |                                                                                                                                               | COFFEE BREAK                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                  |

# **Coffee Break**

## Wednesday, September 4, 17:00-18:15

| ľ      | a<br>a                                                                               |                                                                                                                                                                                                             | Ì                                                                                                                                                                                                                                                               | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Room 5 | WD.5 - PF4 (Pipe Flows)<br>B. Hof                                                    | The Speed Of Turbulent-laminar<br>Fronts In Pipe Flow<br>Dwight Barkley; Marc Avila; Bjöm Hof                                                                                                               | Phase Transition To Sustained Turbulence In Pipe Flow Mukund Vasudevan; Marco Vassallo; Bjöm Hof                                                                                                                                                                | Turbulent-spot Development In<br>Constant-mass-flux Channel Flow<br>Takahiro Tsukahara; Takahiro Ishida;<br>Yohann Duguet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Room 4 | WD.4 - STR2 (Stratification)<br>P. Augier                                            | Growth And Collapse Of A Finite Patch Of Stratified Turbulence Zachary Taylor; Alexander Liberzon; Peter Diamessis; Roi Gurka                                                                               | Experimental Observation Of Density Fluctuations In A Stably Stratified Turbulent Fluid antoine venaille; Louis Gostiaux; Joël Sommeria                                                                                                                         | Tangling Clustering Instability For<br>Small Particles In Temperature<br>Stratified Turbulence<br>Tov Elperin; Nathan Kleeorin; Misha<br>Liberman; Igor Rogachevskii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Room 3 | WD.3 - IT6 (Instability & Transiple WD.4 - STR2 (Stratification) P. Augier M. Buffat | Transition To Turbulence In The<br>Rotating-disk Boundary Layer<br>Ellnor Appelquist; Philipp Schlatter; Herrik<br>Alfredsson; Rebecca Lingwood                                                             | What Happens To The Critical Lay- er When The Transition Inducing er When The Transition Inducing Mechanism In The Swirling Flow In An Annulus Shifts From Tollmien-schlichting's To Taylor's Venkatesa Iyengar Vasanta Ram; Jeanette Hussong, Nikolaus Jeromin | Transition Near The Edge Of A<br>Rotating Disk<br>Benoit Pier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Room 2 | WD.2 - NUM3 (Numerics)<br>H. Touil                                                   | Large-eddy Simulations Of Turbu-<br>lent Flow Around A Wall-mounted<br>Cube Using An Adaptive Mesh<br>Refinement Approach<br>Oscar Antepara, Oriol Lehmkuhl; Assensi<br>Oliva; Federico Favre               | Blended Scale-separation Models For Large Eddy Simulations Roel Verstappen                                                                                                                                                                                      | Progress On Eddy-viscosity Models For Les: New Differential Operators And Discretization Methods F.Xavier Trias; Roel Verstappen; Andrey Gorobets; Assensi Oliva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Room 1 | WD.1 - EXP2 (Experiments) A. Liberzon                                                | Experimental Measurement Of<br>Turbulence Intensity Of Flow Over<br>Two Rod And Circular Cylinder In<br>Tandem Arrangement<br>Farzad Mir, Amir Bak Khoshnevis, Bhsan<br>Gholipour, Mohammed Rezaeimoghaddam | Reconstruction Of Wavelike Three-dimensional Coherent Structures Through Time-resolved Planar Measurements Jérémy Basley; Luc Pastur, François Lusseyran; Julio Soria                                                                                           | Correlation Between Active Grid  Excitation And Generated Wind Field Nico Reinke; Joachim Peinke; Michael Hölling Figuress On Eddy-viscosity Mod For Les: New Differential Opera For Les: New Differential Operation |

Closing (Room 1) D. Lohse

#### **CONFERENCE INFORMATION**

#### REGISTRATION

The desk will be open:

- Saturday, August 31 from 17:00 to 19:30
- Sunday, September 1, 7:30 to 12:00 and 13:30 to 17:00
- Monday through Wednesday, from 10:00 to 12:00

#### **BADGE**

Participants are required to wear their badges all the time during the conference and the gala in order to get access to the different venues.

#### **ORAL PRESENTATIONS**

Plenary sessions will be held in the Mérieux amphitheater (Room 1 in the building in blue, see map). Parallel sessions will be held either in Room 1, or in Rooms 2-5 of the building shown in green on the map.

Speakers are asked to upload their presentations before their session on the laptop computer available in the proper room. We strongly recommend to prepare a high-quality PDF version of your presentation. Usage of personal laptop is also possible. If you choose this option, please, check before the session starts. Staff will be available in each room to help you with this. Contributed talks will be assigned 12mn for presentation + 3mn for questions.

#### **Posters**

Posters have to be installed on the dedicated boards in the hall in front of Amphitheater Mérieux (room 1). Pins and duct tape will be available. Posters will stay in place through the duration of the poster session.

#### **SESSION CHAIRS**

Chairpersons are expected to arrive 10mn before the beginning of their session, and will be asked to enforce a strict schedule in order to keep the sessions synchronized. If a presentation is cancelled or the speaker fails to appear, the session is suspended until it is time for the next presentation.

#### **REFRESHMENTS**

Refreshments will be served during morning and afternoon breaks in the lobby next to the Mérieux amphitheater (Room 1) and in the lower floor (next to Room 2 and to the posters).

#### **CONFERENCE INFORMATION**

#### LUNCHES

Lunches will be served as a buffet from 12:45 to 14:00 next to the Mérieux amphitheater (room 1). Please make sure you wear your badge when accessing the buffet.

#### **W**ELCOME GATHERING

Drinks will be served after the registration on Saturday, August 31 from 17:00 to 19:00.

Another informal reception will take place on Sunday, September 1, at the end of the sessions, at the Lunch Hall, next to Room 1.

#### **TOUR OF LYON**

A walking tour of Lyon will be organized on Monday, September 2 between 18:30 and 20:00. Limited number of places available, on a first arrived basis at registration. The departure will be outside the Lunch Hall.

#### RECEPTION

The gala diner will be held in downtown Lyon at the *Palais de la bourse* located on *rue de la République* (Metro line A, station *Cordeliers*). It will start at 20:00 on Monday, September 2, after the tour, and end at 23:00. Please do not forget to wear your badge in order to get access to the gala venue.

#### **WIRELESS INTERNET**

Wireless will be available by using "eduroam", or an access code provided to the participants.

#### DISCLAIMER

The organizing committee accepts no liability for any injuries/losses incurred by participants and/or accompanying persons, nor loss of, or damage to, any luggage and/or personal belongings.

## **USEFUL INFORMATION**

#### **U**SEFUL PHONE NUMBERS

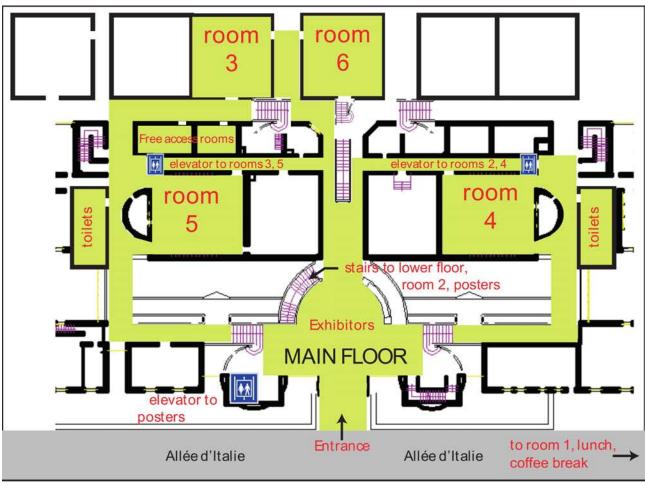
| • | Fire brigade or General emergency (Sapeurs-pompiers) | 18 or 112 |
|---|------------------------------------------------------|-----------|
| • | Medical emergencies (SAMU)                           | 15 or 112 |
| • | Police                                               | 17 or 112 |

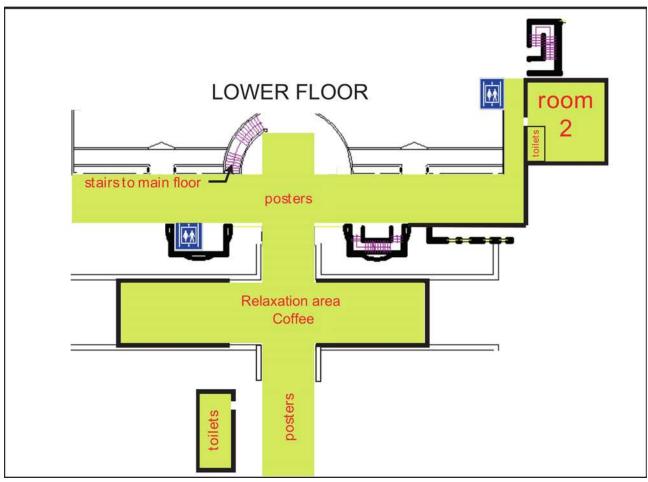
#### **PUBLIC TRANSPORTATION**

Bus and metro information will be available at the registration desk.

#### TAXI

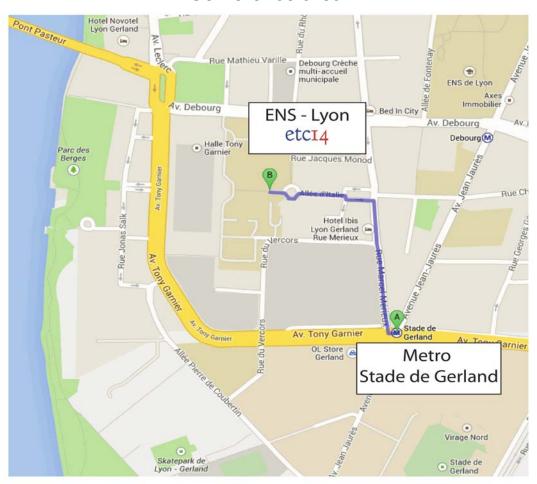
Phone numbers of some taxi companies:


| <ul><li>Taxivillemobile</li></ul> | 06 67 73 03 03 |
|-----------------------------------|----------------|
| <ul><li>Taxi Lyonnais</li></ul>   | 04 78 26 81 81 |
| <ul><li>Allo Taxi</li></ul>       | 04 78 28 23 23 |


## **MAPS**

## Conference site ENS de Lyon




## **MAPS**





## **MAPS**

#### Conference area



#### Gala area



#### Scientific committee

Detlef Lohse [Chair] (U. Twente)

Konrad Bajer (U. Warsaw)

Eberhard Bodenschatz (MPI Goettingen)

Carlo Casciola (La Sapienza, Roma)

Stephan Fauve (ENS de Paris)

Yury Kachanov (U. Novosibirsk)

Rich Kerswell (U. Bristol)

Dan Henningson (KTH Stockholm)

Jean-François Pinton (ENS de Lyon)

Neil Sandham (U. Southampton)

#### **Local Organization Committee**

J.-F. Pinton (ENS de Lyon, CNRS)

M. Bourgoin (LEGI, CNRS)

L. Chevillard (ENS de Lyon, CNRS)

F. Godeferd (LMFA, CNRS)

N. Mordant (LEGI, U. Grenoble)

A. Naso (LMFA, CNRS)

A. Pumir (ENS de Lyon, CNRS)

R. Volk (ENS de Lyon)

#### Topics include, but are not limited to

- · Acoustics of turbulent flows
- MHD turbulence
- · Atmospheric turbulence
- · Reacting and compressible turbulence
- Control of turbulent flows
- Transport and mixing
- Geophysical and astrophysical turbulence
- · Turbulence in multiphase and non-Newtonian flows
- Instability and transition
- Vortex dynamics and structure formation
- Intermittency and scaling
- Wall bounded flows
- Large eddy simulation and related techniques
- Turbulent combustion
- Lagrangian aspects of turbulence
- Turbulence in superfluids

#### More information at

e: etc14@ens-lyon.fr w: etc14.ens-lyon.fr







