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Abstract
High Reynolds number magneto-hydro-dynamic turbulence in the presence of zero-flux large scale magnetic fields is investigated as a
function of the magnetic field strength. For a variety of flow configurations the energy dissipation rate ε follows the scaling ε ∝ U3

rms/`

even when the large scale magnetic field energy is twenty times larger than the kinetic. Further increase of the magnetic energy showed
a transition to the ε ∝ U2

rmsBrms/` scaling implying that magnetic shear becomes more efficient at this point at cascading the energy
than the velocity fluctuations. Strongly helical configurations form non-turbulent helicity condensates and do not result in viscosity
independent scaling. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra showed support
for the Kolmogorov spectrum k−5/3 while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k−3/2.

STRONG VS WEAK TURBULENCE AND LARGE SCALE MAGNETIC FIELDS

One of the most fundamental questions that can be asked about an out-of equilibrium system is the relation between the
energy injection/dissipation rate ε, and the amplitude of the fluctuations u`. In hydrodynamic turbulence such estimates
are clear and the desired relation comes from the balance between the injection rate and the flux of energy to the small
scales due to nonlinear interactions. Such considerations lead to the strong turbulence scaling

ε ∝ Cu2`/τnl ∝ Cu3`/` (1)

where τnl is the nonlinear time scale τnl = `/u`. The situation becomes more complex when linear wave terms are
present introducing new timescales in the system. Magneto-Hydro-Dynamic (MHD) turbulence is such an example for
which turbulent eddies and Alfven-waves (with period τA ∼ `‖/B) coexist. Depending on the ratio τnl/τA different
regimes of turbulence are expected (where here τnl = `⊥/u`) (9). If τnl/τA � 1 the role of the waves becomes
insignificant and one returns to the Kolmogorov scaling relation (1). If however τnl/τA � 1 the scaling is modified.Then
the system can be treated within the framework of wave turbulence theory (7). Phenomenological arguments lead to the
relation

ε ∝ C u2`
τnl

(
τ
A

τnl

)
∝ C

u4``‖

B0`2⊥
(2)

Constancy of energy flux over all scales then leads to the isotropic Iroshnikov-Kraichnan (IK) spectrum E(k) ∝ k−3/2

(5; 6) if (`⊥ ∼ `‖ ∼ `) or the weak turbulence spectrum E(k) ∝ k−2⊥ (4) if no assumption for isotropy are used.

These predictions have been tested by direct numerical simulations (DNS) in periodic boxes with a non-zero magnetic
flux.The weak turbulence spectrum has been produced in DNS only when the k‖ = 0 modes are not forced (8; 3).
(`

F,‖ � B0`F⊥/u` more precisely). If they the k‖ = 0 modes are forced and B0/L � u`/` then the system becomes
quasi-2D with an inverse cascade of energy (thus neither relation (1) or (2) applies) (1). In all regimes (strong, weak and
quasi-2D) the principle role for cascading the energy is played by the weakly varying modes in the direction of B0, and
thus the observed scaling depends on the forcing length and box size. This poses questions on the applicability of these
results in more realistic flows with magnetic fields BL that vary over large length-scales L. BL can be approximated as
uniform provided turbulent eddies do not couple with large scale structures. The validity of this approximation however
is in doubt since small scale variations `⊥ � L couple to large scale parallel variations `‖ ∼ BL`⊥/u`. If BL is strong
enough `‖ can be as large as L and thus turbulence can depend on the topology of the large scale magnetic fields. As
a result based on the value BL alone we cannot a priori decide if turbulence falls in the weak, strong, or a quasi-2D
turbulence regime. Thus the scaling of the energy dissipation with the amplitude fluctuation is not obvious.

RESULTS

To study MHD turbulence in the presence of large scale magnetic fields we employ high resolution direct numerical
simulations of the MHD equations in triple periodic boxes with zero magnetic flux and for a large variety of forcing
mechanisms. All the parameters of the runs can be found in (2). For the simulations a pseudo-spectral code was used
on grids of size 5123 (Runs A#) and 10243 (Runs B#). Due to helicity the magnetic field in the runs is composed of
a large scale helical component BL with |k| ' 1 that contains most of the magnetic energy and small scale turbulent
fluctuations b of amplitude b ∼ u. Thus magnetic energy E

M
provides a measure of the large scale field E

M
' 1

2B
2
L,

while kinetic energy E
K

provides a measure of the turbulent fluctuations. The magnetic field strength here is quantified
by µ ≡ E

M
/E

K
.



Figure 1 shows the energy dissipation rate normalized by U3
rmsku = (2E

K
)3/2ku (left panel) and the ratio of Ohmic to

viscous dissipation (right panel) as a function of the energy ratio µ for all the examined runs. While little variation is
observed for the ratio εη/εν three different behaviors can be observed for the total energy dissipation rate. First, over the
range µ (0.5≤ µ ≤20) the energy dissipation ε follows the Kolmogorov scaling ε ∝ u3`/`. At µ larger than 10 two new
branches appear. For fully helical and strongly magnetically forced runs (marked by triangles in figure 1) both magnetic
and kinetic energy is concentrated in the large scales building helical structures with very small turbulent fluctuations. As
a result the dynamics are controlled by magnetic helicity condensates, and despite the large Reynolds number are not truly
turbulent (limRe→∞ ε = 0). Finally strongly magnetically forced runs (marked by circles) and for µ > 20 transition to
the scaling ε ∝ µ1/2. This scaling can be understood if we consider that the main mechanism for cascading the injected
energy is not the velocity shear Su ∝ Urmsku but rather the magnetic shear Sb ∝ Brmskb that shreds Alfven-wavepackets
as they travel along chaotic magnetic field lines. Thus the large scale field rather than suppressing the turbulence cascade
it enhances it. None of the runs showed a weak turbulence scaling that would have implied according to 2 the scaling
ε ∝ µ−1/2.

Figure 1. Energy dissipation rates as a function of µ = EM/EK

Energy spectra and anisotropic structure functions, measured for the different regimes observed, will be discussed during
the talk.
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