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ENERGY CASCADE AND SCALING IN SUPERSONIC TURBULENCE
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Abstract An exact relation for structure functions in isothermal compressible turbulence [6] is verified using data from a large-scale
three-dimensional turbulence simulation at Mach 6 [13].

INTRODUCTION

Supersonic turbulence is believed to play a key role in extreme astrophysical and terrestrial environments, e.g., regulating
star formation in molecular clouds [8], feeding supermassive black holes [9], creating clumpy structure in hot winds from
Wolf-Rayet stars [16], providing the key to reading records of ancient asteroid impacts [7], controlling air entrainment
in high-pressure volcanic eruptions [17], and affecting fuel mixing and combustion efficiency in scramjet engines [10].
Compared to incompressible turbulence, highly compressible turbulent flows are more complex due to nonlinear coupling
of the velocity, density, and pressure fields. Shock waves and vortex sheets change the topology of interimittent dissipative
structures in supersonic turbulence [18]. A universal scaling of the mass-weighted velocity ρ1/3u was demonsrated in
numerical experiments [13, 14] and independently confirmed in [12, 19, 20], indicating, by dimensional arguments, the
presence of an inertial cascade. More recently, analytical scaling relations for compressible turbulence were derived and
analyzed [5, 6, 21, 4] and the existence of intermediate scaling range dominated by inertial dynamics was demonstrated
rigorously based on coarse-graining [1, 3, 2]. This contribution reports on the verification of one of these new relations
[6] with data from a Mach 6 simulation [13] and on phenomenology that follows from these results.

SCALING RELATION

An isotropic version of the new relation [6, 4] can be written in a symbolic form as

S(r) + F‖(r) = −
4

3
εr, (1)

where S(r) represents compressible source terms, including pressure dilatation, andF‖(r) = 〈[δ(ρu) · δu+ 2δρδe] δu‖+

δ̃eδ(ρu‖)〉 is the longitudinal component of the flux of total energy densityE ≡ ρu2/2+ρe, with ρ being the fluid density,
u the velocity, u‖ ≡ u · r/r its longitudinal component, e ≡ c2s ln(ρ/ρ0) the compressional energy, cs the sound speed,
ρ0 the mean density, δ indicating differences corresponding to the lag r, δ̃e ≡ e(x+r)+e(x), 〈. . .〉 denoting an ensemble
average, and ε ≈ 〈ρu ·a〉 being the mean kinetic energy density injection rate by a large-scale external acceleration a. As
a primitive form of Kolmogorov’s four-fifth law [11], ρ0〈(δu)2δu‖〉 = −4εr/3, relation (1) follows from the constraint
imposed on solutions to the isothermal Navier-Stokes system by the presence of an ideal invariant associated with the
total energy conservation

∫
V
Ed3x = const.

EXPERIMENTAL VERIFICATION

To evaluate relation (1), we used data from a simulation of homogeneous isotropic turbulence at an r.m.s. Mach number of
6 driven with an external large-scale acceleration [13]. In this study, we analyzed 60 full data snapshots at a grid resolution
of 10243 evenly distributed over three flow crossing times representing a statistically stationary state of the system. Fig. 1
shows that relation (1) is satisfied quite well (thick solid black and thin solid grey lines follow each other nicely) in the
range of scales r/L ∈ [0.03, 0.1], where the inertial interval is expected in numerical experiments at this resolution (L is
the periodic computational domain size). The contributions from the flux (black dashed line) and source (grey solid line)
terms have opposite signs and both show roughly linear scaling with r. This is consistent with results of [3, 2] indicating
that the sources act primarily on the largest scales, where the external force is active. The inertial term, 〈δ(ρu) · δu δu‖〉,
is responsible for the dominant contribution to the energy flux at Mach 6. More detail can be found in [15].

CONCLUSIONS

We demonstrated that the analytical relation (1) for compressible isothermal turbulence provides a good approximation to
numerical results. Our analysis supports a Kolmogorov-like picture of the inertial energy cascade in supersonic turbulence,
with the dominant contribution from nonlinear advection, previously discussed on a phenomenological level in [13] and
more recently supported theoretically [1, 3, 2]. The new relation represents an important step beyond phenomenology, as



Figure 1. Scaling relation (1) for highly compressible turbulence at Mach 6 based on the simulation data [13]. For each of the 16 values
of r/∆ ∈ [8, 160], where ∆ is the linear grid cell size (L = 1024∆), approximately 2 × 109 random point pairs per flow snapshot
were used to evaluate S(r) and F‖(r).

it sheds light on the problem of universality in compressible turbulence and provides a way to quantitatively predict the
energy injection rate based on observables. This result has important implications for interstellar turbulence, as constant
energy transfer rates are observed in the interstellar medium over more than four decades in length scale [8].
The fourth-order scaling relation (1) is traditionally formulated in terms of the energy flux, but it is not the only com-
pressible analog of Kolmogorov’s four-fifth law. Another approximate fifth-order relation formulated in terms of fluxes
and densities of conserved quantities [21] also reduces to the four-fiths law under the assumption of incompressibility [5].
Thus, at least two compressible analogs of the four-fifths law exist, consistent with the extension of the turbulent energy
cascade picture to supersonic regimes. Meanwhile, only the fourth-order relation (1) is universal in a sense that its r.h.s.
remains linear in the inertial range at all Mach numbers, including the weakly compressible, nearly incompressible, and
incompressible regimes, see [21, 15] for more detail.
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