
14TH EUROPEAN TURBULENCE CONFERENCE, 1–4 SEPTEMBER 2013, LYON, FRANCE

HIGHER HARMONIC RESONANCE IN LATERALLY HEATED FLOW (LHF)
WITH POISEUILLE FLOW COMPONENT (PFC)

Takeshi Akinaga 1, Tomoaki Itano 2, Kaoru Fujimura 2 & Sotos Generalis 1

1School of Engineering and Applied Science, Aston University, Birmingham, UK
2Department of Pure and Applied Physics, Kansai University, Osaka, Japan

3Department of Applied Mathematics and Physics, Tottori University, Tottori, Japan

Abstract In this work we investigate pattern formation in the hierarchical transition to turbulence through the resonant nonlinear inter-
action between stationary states or travelling wave modes with wave numbers in the ratio 1:2, 1:3 and 1:4 for the case of LHF without
PFC, while we also present results for 1:2 and 1:3 strongly nonlinear resonance in LHF with PFC.

INTRODUCTION
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Figure 1. Geometry for VDG.

We consider fluid flow in a vertical layer with differentially heated side
walls (Figure 1). In the presence of small temperature difference between
the vertical boundaries, flow is parallel to the wall. Fluid near hotter and
colder walls move upward and downward, respectively, because of the
buoyancy effect. In this case heat transfers across the layer by conduc-
tion only, while for larger temperature differences (than a critical value
of the Grashof number Grc, see below), convection by (strongly nonlin-
ear) secondary and higher order flow enhances heat transfer across the
layer.

If a pressure gradient in vertical direction exists, i.e. a Poiseuille component
in the streamwise direction is present, then a traveling wave modulates effi-
ciency of insulation of Ventilated Double Grazing (VDG), which is a primary
target for European ecology, while simultaneously allowing for innovative
engineering solutions.

NONLINEAR SOLUTION AND THE RESONANCE IN PURE LHF

In this paper, we limit ourselves mainly to the study of two dimensional incompressible Boussinesq fluid flow for the
cases Prandtl number Pr (= 0, 0.025) with small Reynolds number (0 ≤ Re ≤ 0.1). Herein we use the half gap width
between two parallel plates, the maximum velocity of PFC across the midplane and the temperature difference between
the walls as the definitions of nondimensional characteristic length, Re and Gr, respectively.
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Figure 2. Bifurcation diagrams for Gr = 1100. (a) Pure LHF: Pr = 0, (b) VDG: Pr = 0.025, Re = 0.1.



The basic flow parallel to the walls is given by

U0 = (U0 (z) , 0, 0) =

(
Gr

6

(
z3 − z

)
+Re

(
1− z2

)
, 0, 0

)
(1)

and just has a component in the vertical (streamwise) direction x (in Figure 1). Up to a critical Grashof numberGr < Grc
the heat mainly transfers between the walls by conduction, since the flow (1) is stable. At Gr = Grc a two dimensional
solution with a wave number αc (= 1.345 for Pr = 0) in the x − z plane (in Figure 1) appears[1, 2], as a result of
the instability of the flow (1). After that two dimensional strongly nonlinear solutions can exist in a regime of α for
Gr > Grc , so heat transfer across the vertical fluid layer is enhanced, since the convective flow carries much more heat
than conduction.

In order to understand the characteristics of the two dimensional flow we depict a bifurcation diagram of a strength of the
flow field L2 [3] versus wave number α for (Pr,Gr) = (0, 1100) in Figure 2 (a). There are six branches of solutions in
either red (PL, PL

′, PL
′′ and PH) or green (M1 and M2) and the subharmonic branches (S2, S3 and S4), where each has a

half, a third or a quarter of the wave number of PH.
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Figure 3. Contour levels of streamwise component of velocity (u)
for (Pr,Gr,Re) = (0.025, 1100, 0.1) (VDG) for solutions on
(a) lower branch and (b) upper one correspond to solutions in red
marked with 4 and � at α = 0.66 in Figure2(b), respectively. Each
level are drawn in red, black and blue for positive, zero and negative
values, respectively.

PH bifurcates from the flow of equation (1) at α =
1.92 and connects to S2 at α = 0.973 (= α2).
This means that PH (•) becomes the solution with
2α2 (◦) in its branch at α2 as a result of 1:2 spa-
tial resonance. On the other hand (left) solution PL
bifurcated from α = 0.430 has 1:4, 1:3 and 1:2
resonance with S4, S3 and S2, respectively, in se-
quence (Figure 2(a)). The connections were also
checked by the linear stability analysis performed on
PH.

PL
′′ and PH are connected with mixed mode solution M1

(shown by dashed curve in green in Figure 2(a)) at α =
0.666 and 1.08, respectively, while M2 bridges solutions
PL and PL

′. Pure mode solutions have a certain symmetry
in the flow field and are stationary. On the other hand,
mixed mode solutions lose this symmetry and have phase
velocity, in spite of no cross flow.

NONLINEAR
SOLUTION AND THE RESONANCE IN VDG

In the case of VDG, it can be found there is structural
difference from LHF in bifurcation diagrams. As an ex-
ample of VDG a bifurcation diagram for (Pr,Gr,Re) =
(0.025, 1100, 0.1) is depicted in Figure 2(b). Branch PH in Figure 2(a) is split into two solutions in red and green, and
there are two solutions corresponding to M1. All solutions have phase velocity, even if solutions correspond to pure mode
of LHF. It is confirmed in Figures 2(a) and (b) that there are multiple solutions in some regimes, and full bifurcation
diagram is more complicated. In Figure 3 profiles of u, which is the streamwise component (x) of the velocity, in the
x− z plane are plotted to compare the solutions of (Pr,Gr,Re, α) = (0.025, 1100, 0.1, 0.66) .
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