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Abstract Within the framework of weakly nonlinear approach, we study the development of an ensemble of unstable waves with so 
close phase velocities that the waves share a common critical layer. It is shown that their amplitudes increase, as a rule, explosively. 
During the initial stage the three-wave interaction is dominant and the low-frequency part of the spectrum grows faster. Later, when 
the higher-order interactions come into play, the growth of the high-frequency part of the spectrum is accelerating in such a way that 
to the end of the weakly nonlinear stage all the waves come with the amplitudes of order unity. 
  

LINEAR STABILITY 
 

In incompressible, stably stratified flows, with velocity ( )xV U z=  which increases monotonically (without inflection 

points) upwards, from zero at the bottom ( 0; (0) 1)z U ′= =  to 0 1U =  as z → ∞ , and the squared buoyancy 

frequency 2( ) ( )z J n zΩ =  (where 
0

d ( ) 1zn z
∞

=∫ ) localized in a pycnocline with the thickness 1ℓ ≪  centered at 

0
d ( ) (1)Nz z zzn z O

∞
= = =∫ , an inviscid instability takes place resulting in the growth of a wide spectrum of 

disturbances [1, 2]. When the stratification level (described by the bulk Richardson number J ) is rather low, oblique 

waves (which have a wave vector ( , ,0)k q=k  with | / | (1)q k O=  or greater) are predominantly amplified by the 

instability whereas when 3/ 2( )J O= ℓ  a wave with a streamwise k  (i.e., 0q = ) becomes the most unstable. It 

should be emphasized that if 2 J <ℓ ≪ ℓ , in a wide part of the instability domain the growth rate has only a weak 

dependence on k , and phase velocities of waves differ from ( )N NU U z=  only by ( )O ℓ  (see Figure 1). Therefore, 

the fastest-growing waves have a common critical layer (hereinafter CL) with the pycnocline embedded in it. 
 

                         
 

Figure 1. Level lines of (a) growth rate and (b) deviation ( ) /Nc U− ℓ  of the phase velocity from NU . The instability 

domain boundaries are shown in bold lines; 0.04=ℓ  (halocline), 0.01J = . 
 

 
A WEAKLY-NONLINEAR STAGE OF THE INSTABILITY DEVELOPMENT 

 
At this stage, a significant contribution to the evolution can be made only by resonance interactions, i.e., those which 
involve the waves with a common CL (so-called phase-locked modes, see [3], for example). Because in flows under 
consideration the pycnocline is inside the CL, the result of such interactions is described by nonlinear evolution 



equations (hereinafter NEEs)  which have the form of integral equations [4, 5]. 
      Let us begin with the early stage of a weakly-nonlinear evolution where the main contribution to NEEs is due to 

three-wave interaction. In this process, interacting waves (with wave vectors obeying the relation 1 2 3= +k k k  and 

common CL) grow in such a manner that the most high-frequency wave ( 1k ) increases with the linear growth rate and 

parametrically accelerates the growth of the other two. For example, in the case of an isolated triad their growth 
becomes super-exponential. For this reason, in contrast to the usual case, such an interaction should be interpreted as the 

development of the waves 2k  and 3k  under catalytic action of the wave 1k  (compare with [3]) rather than as ‘decay’ 

( )→ +1 2 3k k k  and ‘fusion’ ( )+ →2 3 1k k k  of waves forming the triad [5]. 

       To study the evolution of ensembles consisting of more than three waves we impose the (commonly accepted in 

numerical simulation) condition of the periodicity in x  and y , with periods 02 /kπ  and 02 /qπ , respectively. Then 

the ensemble should have a discrete spectrum, 0 0m Nm mk Uω ω= = , where 1 m M≤ ≤  and the frequency of the 

catalyzing wave 0MωΩ = . If 3M ≥ , the waves of such an ensemble interact both with the catalyzing wave and 

between themselves, and a qualitative analysis of NEEs shows that whilst the growth of catalyzing wave remains 

exponential, amplitudes of other waves should increase explosively, ( ) ( )
*( ) ( ) iA t t t α β− +− k k

k ∼ , as well as the CL 

thickness, 1
*( )L t t −−∼ . Notice that during this stage the low-frequency waves grow faster because the growth index 

( ) 3( ) /( 2)m M m Mα α= = − −k  decreases with m  (down to zero as m M= ). Numerical solutions of NEEs for 

3,5,6M = demonstrate an explosive growth of amplitudes with these indices as well. It should be noted, however, 

that 6M =  ensembles containing, among others, the waves with frequencies (1) / 3ω = Ω  and (2) 2 / 3ω = Ω  evolve 

in two steps. In the beginning, the fast growth of those waves takes place, with indices (1) 6α ≈  and (2) 3α ≈  typical 

of 3M =  rather than 6M =  ensembles, and then these amplified waves interact with other waves and accelerate 

their growth until the 6M =  growth indices are reached. It seems likely that such a behavior is inherent in all 
ensembles with a sufficiently wide spectrum. In particular, the analysis of the Holmboe wave spectra obtained in 
numerical simulation and laboratory experiment ([6], Figure 8) demonstrates that during the initial stage of evolution 

one can clearly see local maxima of intensity at / 3ck k≈  and 2 / 3ck k≈  where ck  is the streamwise wave number 

of the fastest-growing wave. 

     As soon as the amplitude of the lowest-frequency wave attains 5/ 2( )O L  the higher-order nonlinear interactions 

come into play, and the trend of perturbation development changes. All the waves, and the catalyzing one among them, 

are now growing explosively with the growth index 2 / 2m mα = +  increasing with the frequency in such a manner 

that towards the end of the weakly-nonlinear stage all the amplitudes become of order unity. 
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