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Abstract We perform a direct numerical simulation (DNS) of the forced, incompressible two-dimensional Navier-Stokes equation
coupled with the FENE-P equations for the polymer-conformation tensor. The forcing is such that, without polymers and at low
Reynolds numbers (Re), the film attains a steady state that is a square lattice of vortices and anti-vortices. We find that, as we increase
the Weissenberg number (Wi), this lattice undergoes a series of nonequilibrium phase transitions, first to a distorted, steady crystals,
then to a sequence of crystals that oscillate in time, periodically, at lowWi, and quasiperiodically, for slightly largerWi. Finally, the
system becomes disordered and displays spatiotepmoral chaos and turbulence. We obtain the nonequilibrium phase diagram for this
system in theWi − Re plane. We show that the Okubo-Weiss parameter Λ provides us with a natural measure for characterizing the
phases and transitions in this diagram.

INTRODUCTION

Equilibrium melting transition, from a spatially periodic crystal to a homogeneous liquid has been studied extensively [1].
Nonequilibrium analogues of this transition have been explored in, e.g., the shear-induced melting of a colloidal crys-
tals [1] and the turbulence-induced melting of a periodic array of vortices and anti-vortices in a forced, two-dimensional
(2D), fluid film. We elucidate the nonequilibrium melting of a periodic array of vortices and anti-vortices in a forced, 2D,
fluid film with polymer additives. We show that such an array can be melted either by increasing the Grashof (or Reynolds
Re) number or by increasing the Weissenberg numberWi. In the former case, the disordered phase is a turbulent fluid that
shows dissipation reduction, because of the polymer additives [2, 3]; in the latter case, the disordered state is a polymeric
fluid that shows elastic turbulence (or rheochaos). We show that this system of vortices and anti-vortices also provides a
way of studying the crossover from the dissipation-reduction to the elastic-turbulence regimes.
We solve the 2D, incompressible, Navier-Stokes (NS), with air-drag-induced friction, and the FENE-P equations for
the polymer-conformation tensor C in terms of the stream function ψ and the vorticity ω = ∇ × u(x, t), where u ≡
(−∂yψ, ∂xψ) is the fluid velocity at the point x and time t, as follows (in the nondimensional form of Ref. [4]):
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Here, Dt ≡ ∂t + u · ∇, the uniform solvent density ρ = 1; α is the non-dimensionalised friction coefficient, ν is the
kinematic viscosity, and Fω ≡ −n3[cos(nx) + cos(ny)]/Ω, is the non-dimensionalised force with injection wave vector
n, Ω = nFamp/(ν

2k3), and α = nνα′k/Famp, where Famp is the forcing amplitude, α′ is the friction coefficient, and
lengths are non-dimensionalised via a factor k/n, with k a wave number or inverse length [4]; (∇u)T is the transpose
of (∇u), Cαβ ≡ 〈RαRβ〉 the elements of the polymer-conformation tensor C (angular brackets indicate an average over
polymer configurations), I the identity tensor with elements δαβ , f(rP ) ≡ (L2 − 2)/(L2 − r2P ) the FENE-P potential
that ensures finite extensibility, rP ≡

√
Tr(C) and L the length and the maximum possible extension, respectively, of the

polymers, and c ≡ µ/(ν + µ) a dimensionless measure of the polymer concentration [5]; c = 0.1 corresponds, roughly,
to 100 ppm for polyethylene oxide [6]. We define the Taylor-microscale Reynolds number as Re ≡

√
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Weissenberg number asWi ≡ τP
√
ε/ν, where E is the total kinetic energy of the fluid and ε the energy dissipation rate

per unit mass for the fluid.

NUMERICAL METHOD

We study homogeneous, isotropic, turbulence, so we use periodic boundary conditions and solve Eqs. (1)-(3) by usingN2

collocation points in a square domain (side L = 2π). We use a fourth-order, Runge-Kutta scheme for time marching with
a time step δt = 0.005 and an explicit, fourth-order, central-finite-difference scheme in space and the Kurganov-Tadmore
(KT) [7] shock-capturing scheme to calculate the advection term of Eq. (3). We solve Eq. (2) in Fourier space by using
the FFTW fast-Fourier-transform library. The numerical error in rP must be controlled by choosing a small time step δt,
to prevent rP from becoming larger than L. We preserve the symmetric-positive-definite (SPD) nature of C at all times



by adapting to two dimensions the Cholesky-decomposition scheme of Refs. [3, 5] for three-dimensional fluid turbulence
with polymer additives. In most of our studies we use N = 128; however, we have checked in representative cases that
our results are unchanged if we use N = 256. We set c = 0.2 in all our simulations. To make contact with earlier
linear-stability and DNS studies of this problem without polymers, the results we present below have been obtained with
no friction. Our qualitative conclusions are not affected by this. We have varied Ω from 1 to 30 and τP from 0.1 to 20 to
study laminar, dissipation-reduction, and elastic-turbulence regimes.

Figure 1. (Color online) Pseudocolour plots of the stream-function field ψ, illustrating the vortex-anti-vortex crystal for Ω = 1: Left
panel: no polymers; right panel: with polymers and τP = 20.

RESULTS

Our direct numerical simulation (DNS) of Eqs. (1) and (3) yields a variety of interesting results that we summarize below.
We find that, as we increase τP , with the value of Ω less than critical value at which turbulence occurs without polymers,
the vortex-anti-vortex crystal becomes unstable. It goes through a rich sequence of transitions that lead, eventually, to a
disordered, elastic-turbulent state. We start from the original, steady, square crystal (SX), imposed by the force; this is
followed by steady crystals that are distorted, via large-scale spatial undulations (SXA), relative to SX; these give way
to distorted crystals that oscillate in time, either periodically (OPXA) or quasiperiodically (OQPXA); finally, the system
becomes disordered and displays spatiotemporal chaos and turbulence (SCT). The pseudocolor plots in Fig. (1) show
two extreme cases: the left panel depicts the crystalline struture of ψ when there are no polymer additives and Ω = 1;
and the right panel exhibits the melted, elastic-turulent state, when we added polymers to the fluid, with Ω = 1 and
τP = 20. As the value of Ω increases, the transition to the SCT state occurs at ever smaller values of τP . To obtain the
nonequilibrium phase diagram for this system in theWi−Re plane, we obtain energy time series, various power spectra,
and Poincaré-type maps. To characterize spatial correlations in the crystalline and disordered states we obtain the spatial
autocorrelation function G(r) =< Λ(x + r)Λ(x) >. In the crystalline case, along a given line, this correlation function
exhibits a periodic array of peaks; the widths of these peaks are related to the widths of vortical or strain-dominated
regions. In the turbulent phase, these peaks decay over a length scale that indicates the degree of short-range order. This
decay is similar to the decay of spatial correlation functions in a disordered liquid.
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