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Abstract The influence of a shear-thinning rheology on nonlinear waves with a 3-fold rotational symmetry in pipe flow is studied. We
focus on the family of waves discovered by Faisst & Eckhardt in 2003,Wedin & Kerswell in 2004. The Carreau model, which is quite
regular, is chosen to describe the rheology of the fluid. The pseudo-spectral code of Roland et al. 2010 is used to compute the nonlinear
waves, by continuation, starting from the Newtonian case. The retardationeffect found in 2010 is studied in a more systematic manner:
the influence of the axial wavenumber is analyzed. An asymptotic regime isdiscovered in the limit of quite strong shear-thinning
effects, where the fluid behaves like a power-law fluid. If one admits thatthe nonlinear waves are ‘precursors’ of turbulence, this gives
a lower bound for the onset of turbulence in the pipe flow of some Carreau and power-law fluids.

INTRODUCTION

The transition to turbulence in pipe flow is difficult to model, even in Newtonian fluids, because of its highly nonlinear
nature. A new path has been opened recently by [3, 6] to attackthis problem. It consists in computing ‘exact coherent
structures’ which are nonlinear traveling waves. For each family of waves, there is a critical Reynolds number below
which no such waves exist, and at which a first wave emerges through a saddle-node bifurcation. We focus here on the
waves found by [3, 6] with a 3-fold rotational symmetry, i.e., if (r, θ, z) are the cylindrical coordinates withz the axis of
revolution of the pipe, the waves are invariant underθ 7→ θ + 2π/3. The waves are also invariant underz 7→ z + 2π/q
with q the axial wavenumber. For these waves the critical Reynoldsnumber, based on the mean flow velocityW , the pipe
radiusa and the kinematic viscosityν, is

Re = 2aW/ν = 1251 . (1)

This is a lower bound of the Reynolds numbers at which turbulence exists. Moreover, some experiments have shown that,
in ‘puffs’, the flow structure can transiently approach the one of the nonlinear traveling waves computed numerically [4].
For all these reasons, these nonlinear waves may be viewed as‘precursors’ of turbulence.
In non-Newtonian fluids, a delay for the onset of developed turbulence in pipes has been evidenced experimentally by
several authors, e.g. [1, 2]. Most non-Newtonian fluids are shear-thinning and viscoelastic. Here we focus on the influence
of the shear-thinning effects, neglecting the elastic response of the fluid, which has been the effect of a lot of attention in
the literature. By computing nonlinear waves of the family of the ones found by [3, 6], we obtain a model of the transition
delay found experimentally.

MODEL AND METHODS

Most of the non-Newtonian fluids used experimentally exhibit strong shear-thinning effects, for which the power-law or
Cross or Carreau-Yasuda rheological models are relevant. In all these models, the viscosity at zero rate-of-strain is not
defined (power-law) or not differentiable (Cross or Carreau-Yasuda). In order to have, from a mathematical point of view,
a well-posed problem, we consider instead a Carreau model, for which the viscosity dependence on the velocity field is
C∞:

ν = ν0 (1 + λ2D2)
(n−1)/2 (2)

with ν0 the viscosity at rest,λ the characteristic time of the fluid,n < 1 the shear-thinning index,D2 the second invariant
of the rate-of-strain tensor. In our computations,n = 1/2. A relevant time unit is the advection timeta = a/W0 with W0

the centerline velocity of the laminar flow at the mean pressure gradient that is applied. Whenλ = 0, a Newtonian fluid
is recovered. Whenλ ≫ t−1

a , the laminar flow approaches the one of a power-law fluid

ν = ν0 λ
n−1 D

(n−1)/2
2 , (3)

i.e., the fluid behaviour approaches the behaviour of a power-law fluid. Experimentally, the relevant Reynolds number is
the one based on the wall-viscosityνw,

Rew = 2aW/νw . (4)

This viscosity can be determined from a measurement of the wall pressure gradient, which gives access to the wall shear
stress. The rheological law then givesνw. The transition delay advocated in our Introduction holds whenRew numbers
are used. From a theoretical point of view, as soon asλ & 2ta, the power-law fluid formula

νw = ν0 λ
n−1 (1 + 1/n)n−1 (5)
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Figure 1. (a) : Critical Reynolds numbers for the onset of the waves computed atq = qN or at optimalq. Black: Rew for q = qN ;
blue: Rew for optimal q; red: Rem for optimal q. (b) : Logarithm of the wall viscosityνw numerically computed (black disks) or
calculated from the formula (5) (black line); logarithm of the mean viscosityνm numerically computed (red disks) and fitted (6) (red
line); logarithm of the mean viscosityνmb in the corresponding power-law fluid laminar base flow (green line).(c, d, e) : Velocity
fields averaged overz for the critical waves at optimalq for λ = 0 (c), 4ta (d), 8ta (e). The colors show the difference between the
mean axial velocity of the waves and the corresponding laminar flow; the arrows show the mean flow in the section.

gives a good estimate ofνw [Black data Fig. 1b]. A pseudo spectral code has been developed to compute nonlinear waves
in the pipe flow of Carreau fluids [5]. The first results obtained, for which the axial wavenumberq was set at its critical
value for Newtonian fluids,q = qN = 2.44/a, showed a quite strong retardation effect [Black data Fig. 1a]. Because of
the large Reynolds numbers attained atλ = 2ta, which require a high resolution, larger values ofλ were not studied.

RESULTS

By varying the axial wavenumberq, in order to minimizeRew, nonlinear waves are found, which occur at quite smaller
values ofRew, as compared with the ones computed forq = qN [Blue data Fig. 1a]. Whenλ → +∞, Rew and the
velocity field of the critical waves converge towards an asymptotic limit [Fig. 1d,e]. Accordingly the critical wavenumber
tends toq∞ = 1.99/a, the phase velocity to0.485W0 and the mean velocity to0.415W0. A computation of the viscosity
in the nonlinear critical wave flows, averaged in the volume of the pipe, i.e. the mean viscosityνm, demonstrates [Red
data Fig. 1b] the existence of an asymptotic law of a form similar to (5): asλ → +∞,

νm ∼ ν1 λ
n−1 . (6)

The mean viscosityνm is the relevant viscosity for these waves. Indeed, the Reynolds number based on this viscosity,

Rem = 2aW/νm , (7)

stays almost constant whateverλ, fromλ = 0 (Newtonian fluid) toλ → +∞ (power-law fluid) [Red data Fig. 1a]:

Rem = 2aW/νm ≃ Re(λ = 0) = 1251 . (8)

This surprisingly simple result, and the fact that the mean viscosity in the waves is of the order of the mean viscosity in
the base laminar flow of the corresponding power-law fluid,νmb = ν2 λ

n−1, which can be computed analytically [Green
data Fig. 1b], yields an approximate analytic formula for the critical Reynolds number of the waves in the asymptotic
regime,

Rew = (νm/νw) Rem ≃ 1251 (νmb/νw) . (9)

This formula may be used for Carreau and power-law fluids withn > 1/3, for νmb to be defined.
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