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Abstract In many approaches the mathematical description of fully developed turbulence relies on the statistical properties of the
longitudinal velocity increments ξ(r) = U(x + r) − U(x). In [1] the increment statistics is described as a Markov process in scale,
leading to a Fokker-Planck description of the probability density functions (PDFs) for the velocity increments. Here we want to extend
this description to the inverse energy cascade in two-dimensional turbulence. The central question is whether the velocity field of the
inverse cascade can be modeled as a Markov process in scale similar to the three-dimensional case. By estimating the coefficients of
the Fokker-Planck equation we are able to discuss the role of intermittency and differences to three-dimensional flows

One of the main challenges for the statistical description of fully developed turbulence is to find a compact mathemat-
ical formulation that includes all relevant phenomena of the flow field. Since the pioneering works of Richardson and
Kolmogorov the description of the energy transport in scale in the velocity field of homogeneous isotropic turbulence
has been identified as one of the most important phenomena in turbulence. The mathematical formulation of a scale
dependent statistical theory relies in most approaches on the statistical properties of the longitudinal velocity increments
ξ(r) = U(x + r) − U(x). Especially phenomenological approaches based on dimensional analysis like the K41 theory
or the multifractal model have been developed to describe the scale dependent increment statistics [3].
A promising approach for a compact description of the cascade was proposed by Friedrich and Peinke [1, 2]. In the
framework of their theory the increment statistics is described as a Markov process in scale, leading to a Fokker-Planck
description of the probability density functions (PDFs) for the velocity increments. The universality of this approach was
tested for different kinds of three-dimensional flows like inhomogeneous [8] or fractal grid generated turbulence [7]. Also
for the transition of a flow from a vortex street to fully developed turbulence in a cylinder wake the flow can be described
as a Markov process in scale [4]. The common feature of all investigated flows is, that the Markov length is in the same
order of magnitude as the Taylor length scale [5].
Here we want to extend the test for the universality of the Markov description by analyzing data from numerical simu-
lations of the inverse energy cascade in two-dimensional turbulence. To this end we simulate a two dimensional flow by
means of the vorticity-equation

∂

∂t
ω(x, t) = ∇× [u(x, t)× ω(x, t)] + ν∆nω(x, t) + γ∆−mω(x, t) +∇× f(x, t) . (1)

Here u(x, t) is the velocity and ω(x, t) = ∇ × u(x, t) is the vorticity. The equation includes the forcing term f(x, t)
that injects energy into the small scales, a hyper-viscous term of order n and a large scale friction term of order m to
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Figure 1. Left: Drift-coefficient for different scales. Right: Reconstruction (denoted as recon) of the second and sixth order longitudinal
structure functions from the numerically estimated drift- and diffusion-coefficients in comparison with the directly calculated structure
functions.



remove the energy from large scales, thus preserving a statistically stationary state. For the data shown in this work, we
chose a hyper-viscous term of order eight and a hyper-friction term of order one.
From the numerical data we demonstarte that theN -point PDF p(ξ1, ξ2, . . . , ξN ) (ξi := ξri ) for the increments on different
scales can be written as

p(ξ1, ξ2, . . . , ξN ) = p(ξ1|ξ2)p(ξ2|ξ3) . . . p(ξN−2|ξN−1)p(ξN ) (2)

for ri+1 − ri ≥ lME with lME ≈ rλ where lME is the Markov-Einstein length [5] and rλ is the Taylor length scale. To
derive an evolution equation for the transition PDFs p(ξi|ξi−1) one can use the Kramers-Moyal expansion [6]. Under the
condition that the third-order term of the expansion vanishes [6] this evolution equation is the Fokker-Planck equation

∂

∂t
p(ξj |ξk, ui) = − ∂

∂ξj

[
D(1)(ξj , rj , ui)p(ξj |ξk, ui)

]
+

∂2

∂ξ2
j

[
D(2)(ξj , rj , ui)p(ξj |ξk, ui)

]
(3)

with the drift-coefficient D(1) and the diffusion-coefficient D(2) defined as

D(n)(ξj , rj) =
1

n!
lim

∆r→0

1

∆r
M (n)(ξj , rj). (4)

These coefficients can be estimated from the numerical data (see left part of fig. 1). Given D(1) and D(2)the whole N -
point PDF or e.g. the structure functions can be reconstructed via the Fokker-Planck equation (see right part of fig. 1).

In our contribution we will develop the method in detail and discuss the results for various choices of parameters for the
two dimensional flow. Special attention will be paid to an elaborate comparison between results from two- and three-
dimensional turbulence and the role of intermittency for the structure of the drift- and diffusion coefficients. We also
discuss the possibility to extend the Fokker-Planck approach to scales smaller than the Taylor scale.

References

[1] R. Friedrich and J. Peinke. Description of a Turbulent Cascade by a Fokker-Planck Equation. Phys. Rev. Lett., 78(5):863–866, Feb 1997.
[2] R. Friedrich and J. Peinke. Statistical properties of a turbulent cascade. Physica D: Nonlinear Phenomena, 102(1-2):147 – 155, 1997.
[3] U. Frisch. Turbulence. The legacy of A. N. Kolmogorov. 1995.
[4] St. Lück, J. Peinke, and R. Friedrich. Uniform statistical description of the transition between near and far field turbulence in a wake flow. Phys.

Rev. Lett., 83(26):5495–5498, Dec 1999.
[5] St. Lück, Ch. Renner, J. Peinke, and R. Friedrich. The markov-einstein coherence length–a new meaning for the taylor length in turbulence.

Physics Letters A, 359(5):335 – 338, 2006.
[6] H. Risken. The Fokker-Planck Equation: Methods of Solutions and Applications (Springer Series in Synergetics). Springer, 2 edition, 9 1996.
[7] R. Stresing, J. Peinke, R. E. Seoud, and J. C. Vassilicos. Defining a new class of turbulent flows. Phys. Rev. Lett., 104(19):194501, May 2010.

Data analysis.
[8] R. Stresing, M. Tutkun, and J. Peinke. Spatial multi-point correlations in inhomogeneous turbulence. 131:33–36, 2009.


