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MIXED CONVECTION IN A RAYLEIGH-BÉNARD CELL WITH AN IMPOSED MEAN WIND
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Abstract We present a numerical study of mixed convection in a Rayleigh-Bénard cell with a lateral wind. We discuss the scaling
properties of the heat flux with the Rayleigh number Ra at changing the intensity of the lateral forcing as well as the statistics of small
scale fluctuations of thermohydrodynamic fields.

INTRODUCTION

Turbulent convection is an extremely ubiquitous phenomenon, occurring in a variety of natural fluid flows and in engi-
neering applications. In its most studied version, the Rayleigh-Bénard (RB) setup, thermal convection occurs between
two differentially heated parallel plates orthogonal to a constant gravitational field [2, 1]. However, in several real-life
situations, the picture can be much more complex with mechanical forces interplaying and/or competing with the “nat-
ural” convection. In the atmosphere, for instance, thermal convection is often (if not always) accompanied by lateral
currents due to large pressure drops. Buoyancy and pressure forces are also active and important for industrial flows, as
in certain type of heat exchangers. In this work we report a numerical study of an instance of a mixed convecting system.
Specifically, we consider a fully developed turbulent RB cell and at a given time we apply a constant pressure gradient,
orthogonal to gravity.

MODEL DESCRIPTION AND SIMULATION DETAILS

The equations of motion of the fluid velocity (u) and temperature (T ) fields read

Dtu = −∇P + ν∇2u + f (1)
DtT = κ∇2T, (2)

P being the pressure field, ν the kinematic viscosity and f a forcing term of the form f = Fx̂ (x̂ is the direction parallel
to the walls, or stream-wise direction). Equations (1) and (2) are evolved using a standard 3d lattice Boltzmann algorithm
[3]; the idea of this method is to integrate numerically the following discrete version of the Boltzmann equation for a
set of probability density functions fl(x, t) (each one corresponding to a discrete lattice speed cl, with l = 0, ..., N − 1,
N = 19 in our model):

fl(x + cl∆t, t+ ∆t)− fl(x, t) = −∆t

τ

(
fl(x, t)− f (eq)l (x, t)

)
; (3)

here ∆t is the time stepping, τ is a relaxation time (related to viscosity, or to thermal conductivity in the temperature
case) and f (eq)l are low Mach number expansions of the Maxwellian equilibria. In the low Knudsen number (i.e. small
mean free path length with respect to the characteristic length scales of the system), equation (3) provides the macroscopic
thermohydrodynamic equations for the (ρ,u, T ) field, which are given, in terms of the fl’s by:

ρ =

N−1∑
l=0

fl; ρu =

N−1∑
l=0

clfl; T =

N−1∑
l=0

gl,

with {gl} a set of auxiliary probability densities, satisfying themselves a lattice Boltzmann equation. We simulate a box
of size Lx = L× Ly × Lz = H = 256× 128× 128, at a Rayleigh number

Ra =
αg∆TH3

νκ
≈ 7× 108;

α is here the thermal expansion coefficient of the fluid, ∆T = Tdown − Tup the temperature drop and g the gravity. The
Prandtl number used is Pr = ν/κ = 1.

RESULTS

We will show that, depending on the relative ratio between buoyancy (∼ g∆T ) and pressure (∇P ), the heat flux can
be much depleted and the conductive profile for the temperature recovered (see figure 1). Such behaviour is consistent
with simple energetic arguments. Finally we will present hints on how the thermal dynamics changes in the case of
non-Newtonian fluids.



Figure 1. Mean temperature profiles (averaged over the gravity-normal planes, i.e. 〈T 〉(z, t) = (1/A)
∫ ∫

A T (r, t)dxdy) as a function
of the cell height at various instants of time after the lateral forcing is switched on.
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