
14TH EUROPEAN TURBULENCE CONFERENCE, 1–4 SEPTEMBER 2013, LYON, FRANCE

TEMPERATURE FLUCTUATIONS NEAR THE ULTIMATE-STATE TRANSITION IN
TURBULENT THERMAL CONVECTION

Xiaozhou He1, Dennis van Gils 1, Eberhard Bodenschatz 1 & Guenter Ahlers1,2

1Max-Planck Institue for Dynamics and Self-Organization, Göttingen, Germany
2Department of Physics, University of California, Santa Barbara, CA, USA

Abstract We report experimental results for temperature statistics in turbulent Rayleigh-Bénard convection (RBC) in a cylindrical
sample of aspect ratio Γ ≡ D/L = 1.00 (D = 1.12m is the diameter and L = 1.12m the height). The measurements were conducted
in the Rayleigh-number range 1013 <∼ Ra <∼ 1.3× 1014 and Pr ' 0.8. Using the elliptic approximation (EA), we derived an effective
Reynolds number Reeff from temperature space-time cross-correlation functions CT (z, τ). Results showed that Reeff ∝ Raζeff with
ζeff = 0.44 ± 0.01 for Ra <∼ 1.0 × 1014. At Ra ' 1.0 × 1014 we found a transition in the Ra dependence of Reeff . At the largest
Re measured, near Ra = 1.23 × 1014, we found ET (k) ∼ k−1.67 for the temperature energy spectra, which agrees well with the
Obukhov-Corrsin −5/3 scaling for passive scalars in a turbulent flow at sufficiently large Reynolds numbers.

INTRODUCTION

Turbulent RBC is expected to undergo a transition from a “classical state" where the convection is driven by laminar
boundary layers (BLs) to an ultimate state where the BLs become turbulent. The transition occurs when Ra exceeds a
typical value Ra∗ [1]. The value of Ra∗ is expected to increase as Pr increases. For Pr ' 1, Ra∗ was estimated to be close
to 1014 [2]. Above Ra∗, the ultimate state is expected to be asymptotic in the sense that it will prevail as Ra diverges.
Thus, above Ra∗ one can extrapolate laboratory measurements to astrophysically and geophysically relevant ranges of
Ra, which often are well above 1020. Recent experiments in Göttingen found Ra∗ in a laboratory-accessible Ra range
using room-temperature compressed gas [3, 4, 5]. The results agreed well with calculations by Grossmann and Lohse
(GL) [2]. Accompanied by this fundamental change in the BL state, interior bulk temperature fluctuations are expect to
have different behavior from that observed in the classical state. That motivated us to conduct a further study of interior
bulk-temperature statistics near the ultimate-state transition.

EXPERIMENTAL FACILITY AND MEASUREMENTS

The experiment was conducted with a large sample cell known as the High-Pressure Convection Facility (HPCF) which
was located in an even larger pressure vessel known as the Uboot of Göttingen at the Max Planck Institute for Dynamics
and Self-Organization in Göttingen, Germany. The sample was cylindrical with the diameter D and the height L both
equal to 1.12m, leading to the aspect ratio Γ ≡ D/L = 1.00. The top and bottom plates were made of aluminum. The
sidewall was made of Plexiglas and had a wall thickness of 9.5 mm. Numerous thermal shields existed and were designed
to prevent parasitic heat flow from the bottom plate to places other than through the sample [4, 5]. We used pressurized
sulfur hexafluoride (SF6) at temperatures close to ambient as the working fluid. Since for a perfect gas Ra ∝ P 2 (P is
the pressure) [4], we increased P up to the maximum allowed Uboot pressure of 19 bars in order to reach the highest Ra
' 2× 1014.

We installed a vertical column of thermistors to measure temperature fluctuations at a radial distance of 1.5cm away from
the side wall. The thermistor diameters were 0.36mm. The vertical positions of the thermistors were distributed over
a range of about 20 cm, nearly symmetrically about the mid-height of the sample. They were known with a precision
of 1mm. The sample was tilted by an angle β ' 0.013 rad relative to gravity so that measurements were conducted in
the preferred rotation plane of an expected large-scale circulation (LSC). For each thermistor we used an ac bridge and a
lock-in amplifier at a working frequency in the range f0 ' 1± 0.4 kHz to measure temperatures at a rate of 40 Hz.

From simultaneous temperature measurements for various vertical separations z, we calculated temperature space-time
cross-correlation functions CT (z, τ) ≡ 〈δT (x, t)δT (x + z, t + τ)〉t/(σ1σ2). Here τ is the time interval, δT the local
temperature deviation from the mean value, and 〈〉t representing the averaging over time. σi(i = 1, 2) is the temperature
standard deviation at position i. For each Ra value, we used over 15-hour-long measurement (2 × 106 data points) to
ensure adequate statistics. As temperature behaves like a locally passive scalar in the interior region of RBC, CT (z, τ)
were found to satisfy the elliptical approximation (EA) near the side wall, where the mean velocity U and the rms velocity
V are comparable [6]. Then we can find a time delay τ0, at which the measured auto-correlation CT (0, τ0) has the same
value as the measured cross-correlation CT (z0, 0). The relation between τ0 and z0 is given by z0 =

√
U2 + V 2τ0. By

this means, we can obtained an effective velocity Veff ≡
√
U2 + V 2 = z0/τ0 and the corresponding Reeff = VeffL/ν.

Using the measured peak shift τp of CT (r0, τ), we can further obtain U = V 2
effτp/r and V =

√
V 2
eff − U2 separately.



We defined the Reynolds numbers, ReU ≡ UL/ν and ReV ≡ V L/ν, respectively.
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Figure 1. (a) Reduced Reynolds numbers ReU/Ra0.44 (squares), ReV /Ra0.44 (triangles) and Reeff/Ra0.44 (circles) as a function
of Ra. The dotted line indicates Ra = 1.06 × 1014. (b) The temperature energy spectrum ET (k) as a function of kλT obtained
for Ra = 1.23 × 1014. The red line represents the power law ET (k) ∼ (kλT )−1.67. The inset shows the compensated spectrum
ET (k)/(kλT )−5/3 near the power-law range of kλT .

EXPERIMENTAL RESULTS

The results for the reduced Reynolds numbers ReU/Ra0.44 (squares), ReV /Ra0.44 (triangles), and Reeff/Ra0.44 (circles)
are shown in Fig. 1 (a). For Ra <∼ 1014, ReU is described well by the scaling exponent 0.44, which agrees with the
prediction from the GL model for the classical RBC state in a Γ = 1 sample [2]. Also we see that the fluctuation
contribution ReV is nearly equal to ReU , and that also for ReV we have ReV ∝ Ra0.44. Consequently, also the effective
Reynolds number Reeff shows the same Ra dependence. For Ra >∼ 1014, we find that ReU < ReV , and thus that the
fluctuations dominate Reeff . Reeff is seen to increase much more rapidly with Ra than it did below the transition. The
drop of ReU above Ra ' 1014 suggests a reduction of the LSC strength as Ra exceeds 1014. Due to the limited Ra range,
we were not able to determine scaling exponents for Ra >∼ 1014, but the data clearly indicate Ra dependences that differ
from those of the classical regime. For the same sample, earlier measurements of the heat transport, expressed by the
Nusselt number Nu, also showed a similar effect at Ra ' 1014. Results from both measurements indicate the onset of the
transition to the ultimate RBC state.

In Fig. 1 (b), we show the temperature energy spectrum ET (k) as a function of the normalized wave number kλT . Here
ET (k) was calculated from the temperature frequency power spectrum P (f). Using the EA, one derives ET (k) = P (f)
with k = V −1

efff [6]. λT is the temperature Taylor microscale, which was calculated from fitting the equation CT (z, 0) =

1− (z/λT )2 to the data measured at small z. This measurement was conducted at the largest Ra (which was 1.23× 1014)
because it spanned the longest range of kλT . In the range 0.09 <∼ kλT <∼ 0.3, we found ET (k) ∼ (kλT )−1.67. This
scaling can be shown more clearly from the compensated plot of ET (k)/(kλT )−5/3 in the inset of Fig. 1b. The exponent
-1.67 agrees well with the Obukhov-Corrsin −5/3 scaling for passive scalars in a turbulent flow at sufficiently large
Reynolds numbers [7].
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