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Abstract At the crossroads of theory and simulation new dissipation and regularization models for large eddy simulation (LES) start
to develop. The basic idea is that the LES-solution should contain only scales of size ≥ ∆, where ∆ is a user-chosen length scale.
In case the convective nonlinearity produces scales < ∆ (forward scatter) we compute an eddy viscosity such that the resulting eddy
diffusion (counter)balance the production term approximately. In case of backscatter, the scale seperation condition is satisfied by
regularizing the nonlinear production. The resulting blend of dissipation and regularization is successfully tested for turbulent channel
flow (Reτ=590).

Large-eddy simulation (LES) seeks to predict the dynamics of spatially filtered turbulent flows. Therefore a spatial filter
u 7→ u is applied to the (incompressible) Navier-Stokes (NS) equations. Additionally we regularize the convective
nonlinearity with the help of second filter u 7→ ũ:

∂tu+ ˜(ũ · ∇)ũ+∇p− ν∇2u = ∇ · ( ˜ũ⊗ ũ− u⊗ u), (1)

The right-hand depends on both u and ũ, due to the nonlinearity. The dependence on u is removed by introducing a
closure model. Here we take an eddy viscosity model. The motion of the larger eddies is then governed by

∂tv + ˜(ṽ · ∇)ṽ +∇q = ∇ · (ν + νt)S(v) (2)

where S(v) denotes the symmetric part of the velocity gradient. The variable name is changed from u to v to stress that
the solution of Eq. (2) differs from that of Eq. (1), because the closure is not exact. A lower bound for the eddy viscosity νt
is determined from the requirement that the production of any eddies of size smaller than ∆ by the nonlinear mechanism
in the left-hand side of Eq. (2) is counteracted by the eddy dissipation in the right-hand side of Eq. (2). To that end, we
consider an arbitrary part Ω∆ with diameter ∆ of the flow domain and take the filtered velocity u equal to the average of
u over Ω∆ (box filter). The Poincaré inequality states that∫

Ω∆

||v − v||2 dx ≤ C∆

∫
Ω∆

||∇v||2 dx,

for every v, where the constant is given by C∆ = (∆/π)2. The residual field v′ = v − v contains eddies of size smaller
than ∆. The eddy viscosity must keep them from becoming dynamically significant. Poincaré’s inequality shows that this
can be achieved by damping the velocity gradient. According to Eq.(2) the L2(Ω∆) norm of∇v dissipates (at least) at its
natural rate, that is

d

dt

∫
Ω∆

1
2 ||∇v||

2 dx ≤ −ν
∫

Ω∆

||∇2v||2 dx,

if the eddy viscosity νt is taken such that

νt

∫
Ω∆

q(v) dx ≥ C∆

∫
Ω∆

r(ṽ) dx, (3)

where q and r are the invariants of the rate-of-strain tensor S: q(v) = 1
2 tr(S(v)2) and r(ṽ) = −det(S(ṽ)). Without the

regularization the right-hand side depends on r(v); see [1]-[2] for a mathematical derivation. The regularization in (1)-(2)
is taken in such in way that we get r(ṽ) instead of r(v). Condition (3) ensures that the transfer of energy from the large
eddies to the subfilter scales is balanced properly by the eddy dissipation. To limit the dynamics governed by Eq. (2)
to scales of size ≥ ∆, the energy that is transferred from the subfilter scales to the large eddies, should be dynamically
insignificant too. This second scale separation condition is imposed by setting r(ṽ) = 0 if r(v) < 0. Notice r(v) < 0
corresponds to backward transfer of energy to the larger eddies. To that end, we consider the following, generic filter,

ṽ = v − 1
24ε

2∇2v

Here the filter length ε is taken such that r(ṽ) = 0, that is ε is to be solved from the generalized eigenvalue problem

det
(
S(v)− 1

24ε
2S(∇2v)

)
= 0

Obviously, we take the smallest non-negative eigenvalue (existence can be proven). Note if r(v) > 0 then ε = 0.



The minimal eddy viscosity satisfying the scale separation condition (3) becomes

νe(v) = C∆
r(ṽ)

q(v)
(4)

Now the problem is that we need know how r and q vary within Ω∆ to compute r(ṽ) and q(v). Here, we cannot simply
take q(v) = q(v), because the relation between q and v is nonlinear (similarly for r). This problem has a likeness with
the closure problem in LES, except that the original closure problem concerns the residual of the Navier-Stokes solution
u, whereas here it is about the residual of the large-eddy solution v. We apply an approximate deconvolution method that
recovers some of the information lost in the filtering process, see [3], e.g. To recover an approximation for v′ we consider
the series expansion of v around v. Ignoring terms that are of the order ∆4, we get the approximation v′ ≈ − 1

24 ∆2 ∇2v.
Thus, we arrive at the (second-order) approximation

νt(v) = 3
2 C∆

r(ṽ)

q(v)
(5)

This eddy viscosity model has the following properties: (a) νt = 0 in any (part of the) flow where r ≤ 0, i.e., the eddy
viscosity vanishes if the nonlinear transport to scales < ∆ is absent; (b) νt = 0 in all flows in which it should vanish
according to Vreman [4]; (c) νt = 0 at a wall; (d) νt → 0 if ∆ ∝ Re−3/4; and (e) the corresponding Smagorinsky
coefficient is bounded by Lilly’s value: CS ≤ 0.17. It goes without saying that the performance of the eddy viscosity
model (5) has to be investigated for many cases. As a first step it was tested for turbulent channel flow by means of a
comparison with direct numerical simulations of Moser et al. [5] at Reτ = 590. The computational grid used for the
large-eddy simulation consists of 643 points. Unlike the standard Smagorinsky model (even with the relatively low value
CS = 0.1), the present model showed an appropriate behavior. As can be seen in Fig. 1 both the mean velocity and
the root-mean-square of the fluctuating velocity are in good agreement with the DNS. To illustrate how much the eddy
viscosity model contributes to the quality of the solution, the mean velocity profile obtained on the 643 LES-grid without
closure model (i.e., νe = 0) is also shown in Fig. 1.
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Figure 1. The left-hand figure shows the mean velocity (in wall coordinates) obtained with the help of the 643 LES and the DNS
by Moser et al. [5]. Results obtained on the 643 LES-grid without closure model (i.e., νe = 0) are also shown for reference (open
symbols). The right-hand figure displays the root-mean-square of the fluctuating velocities. The boxes and circles represent LES data;
every symbol corresponds to data in a grid point.
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