
14TH EUROPEANTURBULENCE CONFERENCE, 1–4 SEPTEMBER2013, LYON, FRANCE

TRANSITION NEAR THE EDGE OF A ROTATING DISK
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The three-dimensional boundary layer due to a disk rotatingin otherwise still fluid is known for its robust laminar–
turbulent transition occurring at a non-dimensional radiusRt ≃ 500, closely corresponding to the onset of local absolute
instability atRca ≃ 507 [6, 7]. Assuming a disk ofinfinite extent, previous studies have established the global linear
stability of the base boundary-layer flow [1, 2], while the nonlinear behaviour can be explained by a scenario involving
both local primary and secondary absolute instabilities [8]. Indeed, local absolute instability is only a necessary but
not a sufficient condition for globallinear instability [4]. In contrast, nonlinear global modes (aka “elephant” global
modes [9]) are triggered by a sharp front at the transition from local convective to absolute instability; thus, the existence
of local absolute instability is a necessaryandsufficient condition for globalnonlinearinstability [10]. It turns out that
the rotating-disk flow precisely falls into the category of linearly stable but nonlinearly unstable systems.
By considering spatially varying systems offinite extent, a recent theoretical study [3] has shown that the presence of a
downstream boundary may have a destabilizing effect on the base state and a stabilizing effect on the nonlinear state. By
using a simple nonlinear model, Healey [3] has shown that thefront which appears at the onset of absolute instability
when the boundary is far from the front, moves slightly downstream when the boundary approaches the front. For the
rotating-disk configuration, the transition radius is thusexpected to move to larger values when the size of the disk is
reduced. However, the theory [3] is unable to quantitatively assess this stabilizing effect for the rotating disk sincethe
nonlinear interaction terms are difficult to quantify for this flow.
Following these theoretical predictions, the edge effectson rotating-disk transition have been experimentally studied by
Imayamaet al. [5]. Three different edge conditions and a range of edge Reynolds numbers have been investigated, but no
obvious variation in the transition location due to the proximity to the edge of the disk has been observed in that study.
In view of this negative result, the present investigation has been undertaken to study in further detail the region even
closer to the edge of the disk, as well as the flow behaviour beyond the disk. The aim is to further narrow down the
region where edge effects come into play and to gain further insight into the role played by the edge region in the global
dynamics.

EXPERIMENTAL SETUP AND PROCEDURE

The experimental facility used in the present investigation has been improved after [11] and consists of a synthetic resin
disk ofR⋆

e
= 250mm radius that is rotated at constant angular velocityΩ, up to2000 rpm. Local velocity measurements

are carried out via constant-temperature hot-wire anemometry. A high-precision computer-controlled traversing mecha-
nism positions the hot wire parallel to disk surface and aligned in the radial direction so as to measure the aximuthal flow
component. The accessible range of radial positions is suchthat measurements up to20mm beyond the edge of the disk
are possible. In the vertical direction, the hot wire can reach down to9mm below the disk surface. Due to the size of the
hot-wire probe (5mm), it is safe to measure below the disk surface only forR⋆ ≥ 253mm.
Here, the boundary-layer thickness is given byδ =

√

ν/Ω, whereν is the kinematic viscosity. Since all distances
are non-dimensionalized byδ, the non-dimensional disk-edge radiusRe = R⋆

e/δ may be varied by adjusting the disk
rotation rate. Then, velocity measurements are automatically performed over specified ranges of non-dimensional radial
and axial positions,R andZ; at each position, data are typically acquired over100 disk revolutions. Velocities are always
non-dimensionalized by the local disk velocity:V = V ⋆/(RδΩ).

RESULTS

Mean azimuthal velocity profiles are shown in figure 1 forRe = 400, 500, 550 and600. Symbols correspond to measure-
ments, while the solid curve indicates the von Kármán similarity solution. These plots show that the azimuthal velocities
depart from the Kármán profile either when transition starts(R & 500) or when the edge is approached (R & Re). Even
when the flow is expected to remain laminar up to the edge of thedisk (e.g.Re = 400, fig.1a), the presence of the bound-
ary is felt about 10 boundary layer units inboard. For this reason, Imayamaet al. [5] removed all data measured close
to the outer edge from their results and discussions. While Healey’s theory [3] assumes a point-like boundary condition
and vanishing fluctuations at this point, the cross-over from the boundary layer prevailing over the disk surface to the
low-velocity region beyond the disk clearly occurs in a moregradual way. We believe therefore that an investigation of
the edge effects should precisely take into account this cross-over region.
The amplitude of the fluctuations around the basic flow has been characterized byVrms, the root-mean-square values
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Figure 1. Mean azimuthal velocity profiles obtained with (a)Re = 400, (b)Re = 500, (c)Re = 550, (d)Re = 600. The solid curve
indicates the von Kármán similarity profile and symbols correspond to measurements at the specified non-dimensional radial positions.
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Figure 2. (a,b) Radial evolution ofVrms atZ = 1 (a) andZ = 3 (b) for Re = 400, 450, 480, 500, 510, 520, 530, 540, 550, 560, 570
and600. (c) Dependence ofRt onRe for different values ofZ.

of the velocity. Figure 2(a,b) shows the radial evolution ofthe fluctuating amplitude for a range ofRe, measured at
Z = 1 (fig. 2a) andZ = 3 (fig. 2b). These plots show two distinct features. ForRe < 500, the boundary layer remains
unperturbed over most of the disk surface and the RMS values rapidly increase near the edge of the disk to reach a
maximum value nearRe + 5 beyond which they decay again. ForRe > 500, fluctuations start to develop asR = 500 is
approached and continue to prevail for the rest of the flow.
In order to monitor more closely the influence of the edge, a criterion for the onset of finite-amplitude fluctuations is
required. Here we defineRt as the radial position where the above RMS values cross the value 0.05 (thin horizontal
lines in figure 2ab). Applying this criterion to the data acquired over a large number of experimental runs, yields the
dependence of the onset radiusRt onRe andZ, shown in figure 2(c). These curves could be interpretated aspointing
towards a weakly stabilizing edge effect, as predicted by [3]. However, further measurements are required before any firm
conclusions could be drawn. A possible explanation for the inapplicability of the theory [3] could be the strong instability
of the radial wall jet shooting over the edge of the disk: large-amplitude fluctuations prevail forR > Re, even at lowRe,
so that the theory should probably model the downstream boundary condition as a source of random noise rather than by
vanishing fluctuating amplitude.
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