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Abstract The Weak Turbulence Theory has been applied to flexural waves of thin elastic plates following the Foppl-von Kármán
equations. The Kolmogorov-Zakharov spectrum EKZ

k ∝ φ1/3k log (k∗/k)1/3 predicted theoretically in the stationary case remains
elusive in experiments. We performed some numerical simulations of the Foppl-von Kármán equations incorporating forcing and
damping. When some truly transparent spectral window exists for intermediate wavenumbers, numerical simulations yields a spectrum
close to the KZ-spectrum. This spectrum is steepened as the experimentally measured damping (not strongly localized in Fourier space)
is incorporated and eventually resembles the experimental scaling EEXP

k ∝ φ1/2k−0.2.

WAVE TURBULENCE THEORY AND EXPERIMENTAL RESULTS FOR ELASTIC PLATES

Phenomenology and hypotheses:
Weakly nonlinear waves systems (including but not limited to surface water waves, Alfven waves, sound waves, BEC
description, etc.) might be considered as some descendants of their ancestor Hydrodynamical Turbulence, with whom
they share a common energy cascade phenomenology: when the forcing and dissipative scales are clearly separated, an
energy transfer might occur in the transparency window between them. This nonlinearities-induced energy flux usually
builds up a power-law spectrum with respect to the wavenumber k and to the energy flux φ. The main difference between
weakly nonlinear waves systems and hydrodynamical systems lies in the existence of a theoretical framework – the Wave
Turbulence Theory (WTT) [1] – to derive statistical properties of the resulting chaotic wavefield, whereas similarity
theory is usually used in Hydrodynamical Turbulence. One of the main achievement of WTT is the derivation of the
so-called Kolmogorov-Zakharov (KZ) spectrum, associated to the stationnary out-of-equilibrium case. The derivation
requires an infinite-size system, clearly separated forcing and dissipation and vanishingly small nonlinearities. From this
last hypothesis, it is expected and required by the derivation that the solutions are slowly modulated waves and exhibit two
characteristic timescales: a rapid one corresponding to the fast oscillations and a slow one for the energy transfer between
waves. For real system, one might consider a third timescale due to dissipation that should be large compared to the two
others. This hypothesis will be referred to as the "double timescale separation hypothesis" in the following.

Thin plates dynamical equations:
The deformation field z of thin elastic plates obeys the Föppl-Von Kármán equation in the limits of small slopes and small
strains [2]:

∂ttz = − Eh2

12ρ(1− σ2)
∆2z + {z, χ} /ρ (1)

∆2χ = − E
2ρ
{z, z} (2)

In these equations, the properties of the material are described by its Young modulus E, its density ρ, its Poisson
ratio σ; the thickness of the plate is denoted h; the curly brackets denote a differential bilinear operator {z, χ} =
∂xxz∂yyχ + ∂yyz∂xxχ − 2∂xyz∂xyχ. Bending accounts for the linear part of this equation and yields the dispersion
relation ω =

√
Eh2/ (12ρ(1− σ2))k2 whereas the cubic term due to streching comes into play for higher amplitudes

and is responsible for 4-waves interactions that yield an energy transfer between modes. Düring et al. applied WTT
formalism to F-vK equations [3] and derived the corresponding KZ spectrum: EKZ

k ∝ φ1/3k log (k∗/k)1/3.

Experimental setup and results:
A thin stainless steel plate (1 m×2 m×0.4 mm) hangs under its own weight. Vibrations are excited by an electromagnetic
shaker at a low frequency (f0 = 30 Hz). Some shade-of-grey fringes are projected on the plate, recorded by an ultrafast
camera and demodulated by an algorithm into a movie of the deformation of the plate. This space-time measure of the
deformation field revealed much about the motion: although the motion is composed of waves [4] and although the double
timescale separation hypothesis has been checked experimentally [6, 7], experimental spectra are in disagreement with
KZ scalings: EEXP

k ∝ φ1/2k−0.2 [4, 5].



NUMERICAL SIMULATION OF THE DYNAMICS OF A FORCED PLATE

The purpose of a numerical simulation of the dynamical equations is twofold. Firstly, the validity of some hypothesis
needed in the derivation of the the Föppl-Von Kármán equations (e.g. the small strain limit) is not certain. Hence
numerical simulations should confirm or infirm that these equations are a good starting point to reproduce the wave
turbulence observed in real plates. Secondly, the physical parameters of the plates such as size or dissipation can be easily
tuned in contrast with the real system.
The integration of the system (1-2) was performed with an order 2 Runge-Kutta algorithm in a pseudo-spectral method.

Simulation of realistic plates: reproducing experimental results
When the experimentally measured damping rate [6] γk = a + bk2 is used, a good agreement is found between experi-
mental and numerical deformation velocity spectra (see figure 1). In both cases the spectrum is significantly steeper than
the KZ prediction with an exponential cutoff at small scales.

Localizing dissipation: recovering the KZ scaling
In order to meet the transparency window hypothesis, dissipation is decreased progressively toward zero over a spectral
range k < kcut so that to localize the dissipation at k > kcut. For a given injected power, figure 2 displays the evolution
of the spectra as the dissipation is decreased. The spectra are seen to evolve from experimental-like spectra to KZ spectra.
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Figure 1. Velocity spectra Ek. Insert: frequency spectra.
Cyan (light grey) lines: experimental spectra; blue (dark
grey) lines: numerical spectra. Dashed line: KZ spectrum
(eyeguide). Curves are vertically shifted for clarity.
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Figure 2. Plain color line: numerical spectra. Dissipation is
decreased following the arrow direction; vertical dashed-dot
line: kcut. Dashed black line: KZ spectrum eyeguide.

CONCLUSION

By reproducing experimental results, this numerical simulation validates the description of our experimental system by
the Föppl-von Kármán equation. The WTT treatment that yields the KZ spectra seems to fail due to the existence of some
finite dissipation at any scale that prevents the energy flux to be constant over any range. This KZ scaling is nevertheless
recovered when dissipation is removed, validating the WTT treatment for dissipationless F-vK equations.
Emmanuel Dormy is aknowledged for discussions about the algorithm.
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