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Abstract Stability of the 2D channel flow with longitudinal wall oscillation is investigated by the Floquet theory. Since this flow has 
time periodicity, the ordinary Orr-Sommerfeld equation cannot be applied. Thus, using a small disturbance, which is modal type but 
has time dependence in only amplitude, time-dependent Orr-Sommerfeld equation is derived and is applied for the Floquet analysis. 
From this analysis, the stable region is found in the parameter space in spite of the supercritical condition. Furthermore, this 
stabilizing effect is more remarkable for 2D disturbance than for 3D one. This means that, due to the longitudinal wall oscillation, 3D 
disturbance is dominant even though the flow is 2D. 
 

INTRODUCTION 
 
It is well known that wall oscillation can reduce the friction drag. Jung et.al1) firstly showed the drag reduction for the 
plane Poiseuille flow by the spanwise wall oscillation. Quadrio and Rico2) numerically estimate the reduction of about 
44%. The preceding studies mentioned the mechanism of the drag reduction from the viewpoint of the structure near the 
wall. However there is no approach to explain the reason of reduction from flow stability. In general, delay of the 
laminar-turbulent transition occurs the drag reduction. Thus, the present study attempt to discuss from the stability. 
 

MODEL FLOW AND TIME-DEPENDENT ORR-SOMMERFELD EQUATION 
 
Figure 1 shows the model flow considered here. Uw and Ω , 
parameters of this system, are amplitude and frequency of the wall 
oscillation, respectively. Reynolds number Re is determined by the 
maximum velocity of mean flow and the h. Thus the critical Re is 
5,772 in the present definition. 
The modal type disturbance u’ is introduced as eq.(1) and then the 
time-dependent Orr-Sommerfeld equation can be deduced from the 
linearized disturbance equation. Hear x, y, z are the streamwise, 
wall-normal, spanwise direction, and α, γ are the wave number 
for each direction.                                            Figure 1. Schematic view of the model flow. 
 

)](exp[),(ˆ),,,( zxitytzyx   uu . (1) 

),(ˆ)(
1

),(ˆ)],()))(,([( 22222222 tyvD
R

tyvtyUDiDtyUi
t

 



. 
(2) 

 
Since this flow can be thought as a linear combination of the plane Poiseuille flow and the Stokes layer, velocity U(y,t) 
is defined as eq.(3). 
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Here  2/ , and i is the imaginary unit. Because eq.(2) cannot be solved directly, the wall-normal direction is 
expands by the Chebyshev collocation points yn. Then we can obtain an ordinary differential equation with a periodic 
function gij as the follows. 
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Here Dij is a differential matrix. When eq.(4) is rewrote as, 
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the stability can be estimated by the Floquet expornent defined as eq.(6). 
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RESULT 

 
Figure 2 shows a neutral curves of the stability on 
the parameter space for several Re number for the 
2D disturbance of (αr, γr) = (1,0). This figure 
shows distribution of the Floquet exponents (the 
system is stable if the Floquet exponent is negative). 
It can be seen that there are stable region even 
though under the supercritical condition. The 
transition delay can be expected in this stable region. 
From the analysis for 2D, or 3D disturbance, it is 
revealed that the stabilizing effect is large for 2D 
disturbance than for 3D. Tables 1,2 and 3 show the 
Floquet exponents for non-oscillating case, (Uw,
Ω)=(0.05,0.15), and (0.1,0.15). By “the Squire’s 
theorem,” it is well known that the 2D disturbance is 
more unstable than 3D one. However, this result 
suggests the oblique waves can firstly appear in this 
oscillating flow. 
 
Figure 2 Neutral curves of the Floquet exponent in 
Uw –Ωplane for several Re numbers. 
 
 

CONCLUSION 
 
The effect of longitudinal wall oscillation is studied by analytically. Since this system has the periodicity due to the wall 
oscillation, the Floquet theory is employed. From the parametric study, it is found that the system is stable even though 
the system is of the supercritical condition. Also, three dimensional wave is more unstable against the Squire’s theorem.  
 

Table 1 The Floquet exponents for the case of non-              Table 2 The Floquet exponents for the case of 
oscillation, and Re=10,000.                                  (Uw,Ω)=(0.05,0.15), and Re=10,000. 

 αr = 1.0 αr = 0.9 αr = 0.8 
γr = 0.0 0.00374 0.00362 0.00013 

γr = 0.1 0.00361 0.00365 0.00034 

γr = 0.2 0.00318 0.00370 0.00090 

γr = 0.3 0.00234 0.00363 0.00162 
 

Table 3 The Floquet exponents for the case of 
(Uw,Ω)=(0.1,0.15), and Re=10,000. 

 αr = 1.0 αr = 0.9 αr = 0.8 
γr = 0.0 -0.00018 0.00067 0.00013 

γr = 0.1 -0.00030 0.00072 0.00034 

γr = 0.2 -0.00071 0.00081 0.00090 

γr = 0.3 -0.00151 0.00081 0.00162 
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 αr = 1.0 αr = 0.9 αr = 0.8 
γr = 0.0 0.00269 0.00285 -0.00043 

γr = 0.1 0.00256 0.00289 -0.00022 

γr = 0.2 0.00213 0.00295 0.00034 

γr = 0.3 0.00130 0.00289 0.00108 


