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Abstract A direct numerical simulation (DNS) based on the lattice Boltzmann method is carried out for decaying grid turbulence at 
low Reynolds numbers with the view to investigating possible departures from Kolmogorov scaling. 1D and 3D spectra show that the 
Kolmogorov scaling is no longer valid when the Reynolds number falls below a certain value. The results are in agreement with the 
low Reynolds number DNS in a 3D periodic box by Mansour and Wray [1]. We are now investigating possible departures from local 
isotropy when the Kolmogorov scaling breaks down. 
 

Introduction and Numerical Set Up 
 
The first similarity hypothesis of Kolmogorov (or K41) implies that spectra of velocity fluctuations scale on the 
kinematic viscosity ν and the turbulent kinetic energy dissipation rate < ε > at large Reynolds numbers. However, 
evidence, based on both DNS data and measurements, points to this scaling being also valid at small Reynolds numbers, 
provided effects due to inhomogeneities in the flow are negligible. Recently, Djenidi and Antonia [2] exploited this to 
develop a spectral method for estimating <ε > in various turbulent flows. One can however expect that this scaling will 
break down when the Reynolds number becomes relatively small. Mansour and Wray [1] showed that for 3D periodic 
box turbulence, the energy power spectrum scaled on Kolmogorov variables deviates for the “universal Kolmogorov 
spectrum” at high wave numbers, suggesting indeed that this breakdown has occurred. The present work aims at 
extending Mansour and Wray’s work to grid turbulence. We will investigate how the Kolmogorov-scaled power 
spectrum evolves as the Reynolds number continues to decrease, with the view of determining the critical Reynolds 
number below which the Kolmogorov scaling breaks down. A second aim is to determine whether local isotropy is still 
valid and how the structure functions behave when the Kolmogorov scaling has broken down.  
The direct numerical simulation (DNS) is based on the lattice Boltzmann method (LBM). Rather than solving the 
governing fluid equations (Navier-Stokes equations), the LBM solves the Boltzmann equation on a lattice [3]. The 
method was successfully used to simulate turbulent flows [e.g. 4, 5, 6]. The computational uniform Cartesian mesh 
consists of 1600 x 240 x 240 mesh points with Δx = Δy = Δz (x is the longitudinal direction and y and z the lateral 
directions). The turbulence-generating grid (placed at the x-node of 180) is made up of 6 by 6 floating flat square 
elements in an aligned arrangement (see [4]). Each element is represented by 1 x 20 x 20 mesh points and the mesh 
spacing (M) between the centre of two elements is 40 mesh points (i.e. 2D), yielding a grid solidity of 0.25. The 
downstream distance extends to x/D = 70 (equivalently x/M = 35), where the origin of x is the grid plane and D = 20 
mesh points is the block side length. Periodic conditions are applied in the y and z directions. At the inlet, a uniform 
velocity (U0 = 0.05, and V0 = W0 = 0) is imposed, and a convective boundary condition is applied at the outlet. A no-slip 
condition at the grid elements is implemented with a bounce-back scheme [7]. The Reynolds number, RM, is varied 
between 1600 and 3200.  
 

Results and Discussion 
 
Figure 1 compares the 1D and 3D spectra for the present simulation with those of existing DNS [1, 8] and 
measurements [9]. The present 3D spectra follow reasonably well those of Mansour and Wray [1] at similar Reynolds 

numbers. There is a clear deviation from the spectrum of Comte-Bellot and Corrsin [9] which was measured at Rλ = 
60.7. The same deviation is also observed in the 1D spectra between the present ones and those of Comte-Bellot and 

Corrsin [9] (Rλ = 60.7) and Abe et al. [8] at Rλ = 66 obtained at the centerline of a turbulent channel flow. Notice the 
flattening of the low Reynolds spectra in both the present and those of Mansour and Wray relative to those of Comte-
bellot and Corrsin [9] and Abe et al. [8]. Interestingly, Mansour and Wray [1] observed that the nonlinear terms remain 

active at low Rλ, despite the clear absence of an inertial range in the spectra. It should be recalled that Kerr [10] has 

observed a similar spectral deviation and flattening when Rλ = 18.4 in his DNS of 3D periodic box turbulence. Figure 1 

indicates that the deviation increases as Rλ decreases, thus corroborating Mansour and Wray’s [1] conclusion that “the 
shape of the spectra at the Kolmogorov length scales is Reynolds number dependent” at low Reynolds numbers. It thus 

appears that the Kolmogorov scaling breaks down when Rλ ≤ 20. Note however that the critical value Rλ,c at which the 
spectral deviation begins may be higher than 20. Figure 1 suggests that this value is likely to be less than 60; Mansour 



and Wray [1] proposed a value of 50. Clearly, further measurements and/of DNS are required to determine the actual 

value of Rλ,c.  
 
We are currently carrying out tests on local isotropy at low Reynolds numbers using second and third-order structure 
functions. The results will be presented at the conference.   

	  

 
 

Figure 1. 1D and 3D spectra for box and grid turbulence. A spectrum on the centerline of a channel is also shown. 
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