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Abstract We investigate numerically the validity of Kraichnan-Batchelor scalings [1, 7] for forced 2D turbulence. We use different
numerical algorithms and different ways of forcing the flow in order to get results as much independent possible of the conditions
of experiments. We systematically observe a deviation from the classical k−5/3 scaling in the energy inverse cascade inertial range,
measuring a steeper slope proportional to k−2. This steepening is related to the emergence of a population of vortices that dominate
the distribution of energy across scales, and whose number density and vorticity distribution with respect to vortex area can be related
to the shape of the spectrum.

NUMERICAL EXPERIMENTS

To investigate the validity of theoretical scalings in forced 2D turbulence, we proceed to numerical experiments in which
both the numerical algorithms and the forcing types are varied. First, we use classical spectral methods with ordinary
viscosity, see Scott [8] for details. Second, we use the Combined Lagrangian Advection Method (CLAM), a new hybrid
numerical method that combines the efficiency of Lagrangian contour dynamics and vortex methods with the energy
conservation properties of the pseudo-spectral method, see Fontane, Dritchel and Scott [5] and references therein for
details. For all simulations, no large scale friction nor hypo-diffusion schemes is present in order to avoid any distortion
of the inverse cascade and to be also in agreement with the theoretical framework used by Kraichnan. The lack of large-
scale dissipation means that our simulations are not stationary in the strict sense, because energy grows continuously, but
may be considered quasi-stationary in the sense that the energy distribution in a subrange of the inverse cascade is thus
stationary. In fact, it is precisely this quasi-stationary situation that was originally considered by Kraichnan, in which
energy cascades undissipated towards ever large scales. We consider narrow band and large band spectral forcing as well
as spatial forcing obtained by randomly introducing point vortices (monopoles, dipoles or quadrupoles) in the flow. This
original spatial forcing is made possible by use of the CLAM algorithm [3, 6] and has never been tried before since the
commonly used spectral methods are not designed for it.

RESULTS

Our results support the recent finding of Scott [8], namely that when a direct enstrophy cascading range is well-represented
numerically, a steeper energy spectrum proportional to k−2 is obtained in place of the classical k−5/3 prediction. With
a simple analytical model which closely matches the numerical spectra between the large scales and the forcing scale,
we show that this steep spectrum is associated with a faster growth of energy at large scales, scaling like t−1 rather than
Kraichnan’s prediction of t−3/2.
The population of coherent vortices that emerge at the forcing scale and grow through multiple interactions is responsible
for the deviation of the present results from the theoretical predictions [4, 5]. Indeed, in his model Kraichnan assumed that
energy transfers occur locally in spectral space whereas coherent vortices are localised in physical space and therefore are
widely distributed in spectral space. This is why we examine the characteristics of the vortex population, in particular their
number density and their core vorticity as a function of their size. We consider a decomposition of the full vorticity field
into a component associated with coherent vortices and a residual. To define the coherent part we first identify contiguous
regions of vorticity whose magnitude is above the rms value, following the method described in Fontane et al. [5]. We
then consider the shape of each contiguous region by calculating the following parameter
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are the centroid and enstrophy of the region. Figure 1 illustrates the vortex identification procedure for a representative
CLAM simulation with spectral narrow-band forcing.
With this decomposition, enstrophy spectra associated with each field are obtained, and the field of coherent vortices
contains most of the energy and enstrophy, except at the very smallest scales. Moreover, the vortex population exhibits



Figure 1. Decomposition of the vorticity field (left) into coherent (middle) and incoherent part (right). The images are screen-shots at
time t = 10 of one CLAM simulation with narrow band spectral forcing at kf = 64. Only one sixteenth of the domain is shown.
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Figure 2. Vortex population characteristics for CLAM simulations with narrow band spectral forcing at kf = 64: vortex number (left)
and average vorticity (right) distribution function of vortex area. Data are averaged over two periods: t ∈ [5, 30] and t ∈ [30, 50].

a k−2 energy spectrum in the inverse cascade range while the background residual follows Kraichnan’s prediction with
a spectrum ∝ k−5/3, indicating a structureless field of filamentary debris, consistent with Figure 1. By examining the
number density distribution of the vortex population, we can relate more precisely the shape of the spectrum to the vortices.
Benzi et al. [2] argued that algebraic energy spectra of the form k−p for p > 3 may be associated with the emergence
of a distribution of vortex sizes, i.e. an algebraic number density distribution nv(A) = c A−q , provided that the average
vorticity ωv in each vortex does not vary significantly with its area A. We can write the coherent enstrophy as

Zcoh =
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where As is the size of the domain considered. Identifying A with k−2, it follows that Zcoh(k) ∝ k−5+2q or equivalently
Ecoh(k) ∝ k−7+2q . Thus the observed k−2 spectrum must be related to a vortex number density distribution close to
nv(A) ∝ A−2.5, as this seems to be the case in Figure 2. Nevertheless, the separation between the forcing scale and the
box size is relatively limited and there is a slight growth of the average vorticity with vortex area, see Figure 2. These two
elements do not enable us to be definitely conclusive here.
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