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Abstract In the context of flows laden with inertial particles, we explore a novel regime, in which turbulence is sustained solely by the
thermal radiation absorbed by the dispersed phase. When a fluid laden with particles is subject to radiative flux, non-uniformities in
particle distribution result in local temperature fluctuations. Under the influence of gravity, buoyancy induces the vortical fluid motion
leading to higher non-uniformities of inertial particles. From numerical simulations it is shown that the feedback loop between the
local particle concentration, the temperature fluctuations and the convective motion can create and sustain turbulence. When the parti-
cle response time is comparable to the temporal scales of the flow, the system exhibits intense fluctuations of turbulent kinetic energy
associated to the high intermittency of the particle concentration.

The proposed study is aimed to understand the interplay of hydrodynamic turbulence, radiative heating and particle
transport. These three fundamental phenomena are encountered simultaneously in many branches of physical science,
from meteorology to engineering, oceanography and astrophysics. In fluid flows laden by particles or droplets, the velocity
lagging of the dispersed phase with respect to the carrier fluid can lead to significant local concentration in zones of shear
and away from vorticity cores [2].
In this study, we consider a homogeneous suspension of particles subject to radiative heat flux in presence of a gravity
field. Non-uniformities in particle concentration result in temperature variations, due to the different absorptivity of the
dispersed and carrier phases. Fluid motion is induced by buoyancy forcing. The resulting baroclinic vorticity production
induces higher non-uniformities in the particle distribution. The coupling between local particle concentration, tempera-
ture fluctuations and hydrodynamic forcing results in a spontaneous and self-sustained feedback loop that can trigger and
sustain turbulence in a large fraction of the parameter space.
We focus here on the weak radiative flux regime. In this limit, we can assume that the temperature of the system is quasi-
stationary, and that the density variation is small enough to be retained only in the buoyancy forcing term. In line with
these assumptions, the governing equation of the carrier phase are obtained in the framework of the Oberbeck-Boussinesq
approximation [1]. They read:

∇.u = 0 , Dtu = −1
ρ
∇p + ν∇2u+ + gαθez , Dtθ = κ∇2θ +

q′

ρcf
(1)

where Dt = ∂t +u.∇, ν is the kinematic viscosity, κ is the thermal diffusivity, θ = T −T0 is the temperature fluctuation
around the reference temperature, α is the isobaric thermal expansion coefficient, cf is the fluid heat capacity, g is the
gravity, and q′ = q − q represents the spatial fluctuations of the thermal source term, with q the total heat flux absorbed
by the system per unit volume. These equations are solved using a pseudo-spectral method in a periodic cubic domain.
For the particle phase, we use the Lagrangian approach to obtain the evolution of the particle velocity and position. It is
assumed that the particles present a much higher density than the fluid and are much smaller than the computational mesh.
It is then legitimate to consider the particles as material points. The evolution equations for a particle are then given by:

dtxp = up , dtup =
u− up

τp
+

ρp − ρ

ρp
gez (2)

xp is the particle position coordinate, up is the particle velocity, ρp is the particle density, mp is the mass of a parti-
cle, and τp is the particle relaxation time. Φp represent the radiative heat flux absbored by one particle, and it can be
related to q: Φp = q/n, with n = Np/H3 the mean particle number density, H the size of the computational domain
and Np the number of particle in this box. The gas velocity at the particle position is estimated from cubic spline inter-
polation [3]. The physics is further simplified by considering the particles in thermal equilibrium with the surrounding
fluid. Then the inter-phase heat exchanges are obtained by projection of the Lagrangian quantities onto the Eulerian

mesh: q(x) =
Np∑
p

Φpδ(x− xp) where, similarly to [4], we applied a Gaussian regularization to approximate the Dirac

distributions of the source term.
Since the forcing of the flow is related to the particle segregation, we would expect the key parameter to be the particle
Stokes number St, i.e. the ratio of the particle response time to the time scale of the flow structures [2]. However, unlike in
“one-way-coupled” particle-laden flows (where the fluid flow is not influenced by the dispersed phase), here the flow time
scale is not known a priori. Nevertheless, an expression for the flow time scale, t∗, is derived by dimensional analysis. The



size of the box, H , is assumed to be not directly relevant for the particle segregation, and τp is not retained in order to build
a non-dimensional parameter corresponding to the Stokes number. Dimensional analysis yields t∗ = (αgβ)−2/5

ν1/5

where β =
d〈T 〉s

dt
=

q

ρcf
is the mean rate of fluid temperature increase. The temperature scale is set by imposing

θ∗ = βt∗, and the length scale, obtained from the Brunt-Väisälä frequency t−1
∗ = (αgθ∗/`∗)

1/2, is `∗ = (αgβ)−1/5
ν3/5.

In connection with equations (1) and (2), the non-dimensional form of the set of parameters can be expressed as: the
Stokes number St = τp/t∗, the Reynolds number (or a confinement parameters) γ = H/`∗, the density and heat capacity

ratios ρp/ρf the Prandtl number Pr = ν/κ, the Froude number Fr =
(
gt2∗/`∗

)−1/2
and the non-dimensional particle

number density C = n`3∗.
We have run a set of simulations for 7 Stokes numbers (ranging from 3× 10−3 to 30) and 3 Reynolds numbers (γ = 40,
80, 220), keeping all other parameters constant. (Pr = 1, ρp/ρ = 909, 1/Fr = 0 and C = 0.35) These simulations
correspond to Np = 2.31·104, 1.10·105 and 2.00·106 particles, respectively, in a domain of size (2π)3 with computational
mesh of 653, 1283 and 2563 elements, respectively. This ensure that all the physical scale of the flow are properly resolved
and the particle diameter much smaller than the grid size. All simulations are initiated with quiescent flow conditions (zero
velocity and temperature fluctuations) and a random distribution of particle.
After an initial spin up, the system reach a statistical steady-state. The influence of the particle response time on the
dynamics is demonstrated in [6]. In particular the variance of the fluid temperature as well as the turbulent kinetic energy
of the system present a sharp pic around St ≈ 1. As seen in the flow visualization snapshots, this peak is connected to
a very high particle segregation. We base our analysis of the particle clustering on Voronoi tessellation of the particle
positions [5]. The PDF of the volume of the Voronoï cells (see the figure of the middle) present very stretched tails for
intermediate St which is a manifestation of the high intermittency of the particle distribution. The sets of particles that
define the clusters are determined using the connectivity of the Voronoï cells. Based on this cluster definition it becomes
possible to compute statistics characterizing the clusters. For example, the figure on the right hand side presents the
evolution with the Stokes number of the particle concentration in cluster average over all the clusters. Furthermore by
introducing a cluster-cluster correlation we can track the temporal evolution of clusters and detect the clusters merging
and splitting.
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(left): Snapshot for γ = 80 and St = 0.07 of the particle concentration (compared to the mean concentration). (middle):
PDF of the volume of the Voronoï cell, for St = 0.003, 0.019, 0.074, 0.352, 1.064, 7.343 and 29.36 (respectively shifted
upward), for γ = 40 (black), 80 (blue) and 220 (red), comparison with the PDF (in gray) for the Poisson distribution.
(right): Mean particle concentration in cluster versus the Stokes number for γ = 40 (black), 80 (blue) and 220 (red).
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