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Abstract Using an approach developed earlier for renormalization of the Boltzmann collision integral (V.L. Saveliev and K.Nanbu, 
Phys. Rev. E 65, 051205, 2002), we derive an exact divergence form for the fragmentation operator. Then we reduce the 
fragmentation equation to the continuity equation in size-space, with the flux given explicitly. This allows us to obtain new self-
similar solutions, and to find the new integral of motion for these solutions (we call it the bare flux). We show how these solutions 
can be applied as a description of cascade processes in three and two dimensional turbulence.  We also suggested an empirical 
cascade model of impact fragmentation of brittle materials.. 
 

RENORMALIZATION OF FRAGMENTATION EQUATION 
The fragmentation process consists of the generation of random fragments (or particles) by successive breaking[1]. The 
process occurs in numerous physical phenomena and engineering applications. One approach that is often used to model 
these processes is the fragmentation under scaling symmetry model. The scaling symmetry means that at each 
fragmentation step, a parent particle splits into daughter particles with a partition probability independent of the particle 
size, i.e. the particle size r  is modified in a step by step manner by multiplication by a random multiplier r rα⇒ ; 

0 1α≤ ≤ . We will consider the case when fragmentation rate ν  is a power function on size. The fragmentation 
events result in an increase in the total number of particles over time, whilst the total mass of particles is conserved. 

Therefore instead of the number distribution function, the mass distribution function ( )f r  is usually used. The norm 

of this function is conserved. Thus the fragmentation equation for ( )f r  takes the following form:  
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Using an approach developed earlier for renormalization of the Boltzmann collision integral [2], we derive an exact 
divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation 
in size-space, with the flux given explicitly[1]: 
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If the fragmentation spectrum ( )q α  is a power function ( ) ( )1q
γ

α γ α= +  with 1γ > − , then equations can be 

simplified significantly because of the property: 
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and exact practically important solutions to fragmentation equation can be obtained. The renormalized fragmentation 

equation contains an explicit expression for the mass-flux. This allows us to derive a new integral of motion 
0
j  for 

self-similar solutions. This integral is referred to as the bare flux. 
 

INTERMEDIATE ASYMPTOTICS: SELF-SIMILAR SOLUTIONS TO THE RENORMALIZED 
FRAGMENTATION EQUATION 

Amongst all the solutions, self-similar solutions are of special interest; these solutions are essentially the intermediate 
long-time asymptotics. For negative values of µ , the self–similar solutions can be expressed by confluent 

hypergeometric function in the following form: 
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This solution describes the fragmentation process, subjected to a second order phase transition at zero time, 0t = .  

APPLICATION TO TURBULENT CASCADE 
Solution (4) has an interesting application to the description of the turbulent cascade process. In inviscid flows, 
mechanical energy is conserved, so instead of mass-distribution in size space, we could consider the distribution of 
specific turbulent energy in the size-space of turbulent eddies undergoing a turbulent cascade. The specific energy 

distribution function and the specific energy flux have the following dimensions: 2f v r  =
 

 and 

3 2 3j v r r t  = =
 

, respectively. The eddy-fragmentation process, described by solution (4), is characterized by two 

dimensional constants 
0
j  and c . For maximum symmetry of this solution, we assume that constant c  can be 

expressed in terms of 
0
j  as 

0

x

c j= . This gives ( )( )1 3, 2 3, 3 2 1x µ α γ= = − = + . In infinitely high 

Reynolds number turbulence, the flux of specific turbulent energy at zero size has the standard notation ε , Solution (4) 

for integer values , 1,2, 3,...;n nα = =  can be expressed in terms of elementary functions. Using 1 3x = , 

2 3µ = − ; 1γ = ; 3α = , the expressions (4) can be applied to the problem of decaying turbulence: 
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Under the time translation 
0

t t τ→ +  in eq. (5), and setting 
0

τ → ∞ , the following stationary solution takes place: 
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Then the distribution of turbulent energy density in size-space can be expressed by the second-order longitudinal 

velocity structure function ( ) ( )
2

( )D r  = + −  
x

v x r v x� � � :  
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This distribution corresponds to the spectrum proposed by Kolmogorov for stationary homogeneous turbulence. 
Remarkably, the solution (6) to the fragmentation equation agrees with the Kolmogorov spectrum (7) even including 

the universal constant (
2

2C =  was established by measurements). In previous work we have applied symmetry 

methods in a group-theoretical description of turbulence [3], but on the basis of the Navier-Stokes equation, rather than 
in the framework of empirico-mathematical model, as in the present paper  
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