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Abstract Many turbulent systems exhibit random switches between qualitatively different attractors. The transition between two
different attractors is often an extremely rare event that can not be computed through direct numerical simulations due to complex-
ity limitations. In this talk, we present results for the calculation of the most probable transition trajectories or instantons between
non–equilibrium stationary states (attractors) in the 2D stochastic Navier-Stokes equations. By representing the transition probability
between two given states as a path integral, we can determine the instanton by the minimization of an appropriate action functional.

RANDOM TRANSITIONS IN TURBULENT FLOWS

Many non-equilibrium turbulent flows eventually relax to some non-equilibrium statistical steady state. If several such
states coexist, then the system may, due to stochastic fluctuations, undergo sporadic random transition one to another
quasi-stable flow configuration. This bistable behaviour has been observed in several turbulent systems, including mag-
netic field reversals of the Earth, or in MHD experiments [1], Rayleigh–Bénard convection cells [5, 8, 6, 4], two–
dimensional (2D) turbulence experiments and numerical simulations [12, 9, 2], three–dimensional turbulence flows [10],
atmospheric flows [13] and for paths of ocean currents [11].

A straightforward numerical approach in considering these transition events would be to simply perform a direct nu-
merical simulation of the governing equations and to wait until a transition trajectory is observed. Most of the time, this
is impracticable due to the extremely long time between subsequent transitions, very high Reynolds number and to the
large number of degrees of freedom involved. In this talk, we will consider two–dimensional and geostrophic turbulence
models with stochastic forcing. As an alternative to direct numerical simulations , we propose a non–equilibrium statis-
tical mechanics approach to the computation of this phenomenon. Our strategy is based on the large deviation theory for
stochastic dynamical systems, namely the Freidlin–Wentzell theory [7], derived from a path integral representation of the
stochastic process.

THE LARGE DEVIATION AND INSTANTON APPROACH

The transition probability P is the probability of the system starting from an initial state ω0, to reach a final state ωT in a
time interval T . It is thus an essential dynamical quantity that encodes most of statistics of the system. For multi-stable
systems with weak noise, the transition from one attractor to another is an extremely rare event. However, as paradoxical
as it may seem, most of the trajectories connecting two attractors are usually concentrated close to a single one, known as
the instanton trajectory.

Instanton theory is a way of determining this most probable transition (instanton) trajectory between two states in a
non-equilibrium dynamical system with weak noise. The transition probability is represented as a path integral over all
possible transition trajectories connecting the two states:
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Deviation from the deterministic (zero noise) trajectory is represented by a ‘cost’ function that exponentially diminishes
the probability the further away from the deterministic trajectory one get. The exponent is proportional to the inverse of
the noise amplitude α and the system specific action functional A.

The goal is to compute the that trajectory that contributes the most to the transition probability P . This can be achieved by
utilizing the saddle–point approximation, in the weak noise limit (α → 0) to the path integral (1). If the set of transition
trajectories are concentrated around a specific one, then the saddle–point approximation is valid and leads to the definition
of the instanton being the trajectory that globally minimizes the action functional A subject to the boundary conditions.
The transition probability can then be computed and used to estimate the timescale of observing such a trajectory. Because
of the large separation of timescales, usually it is far more efficient to compute the minimizer of the action than to perform
a direct numerical simulation of the system until a transition trajectory is observed.



In this talk, we present results on applying the large deviation and instanton approach to bistability in the stochastically
forced 2D Navier-Stokes equations. We show that by minimizing an appropriate action, we can predict the most probable
instanton trajectory between two given non-equilibrium stationary states and estimate the period of its occurrence. This
is the first time this approach has been applied to bistability in turbulence.

APPLICATION TO THE 2D STOCHASTIC NAVIER-STOKES EQUATIONS

We consider the 2D stochastic Navier-Stokes equations in a regime of weak forcing and dissipation. In this case, the
largest scales of the flow self-organize to produce coherent jets and vortices [3]. Moreover, it was recently shown that
over long times, random switchings between two non-equilibrium stationary states can occur – more precisely between a
zonal flow and a vortex dipole [2]. It is this behaviour that has given us the motivation to apply instanton theory to the 2D
stochastic Navier-Stokes equations. We determine an appropriate action for the system, design an algorithm to compute
the instanton trajectories for fluid flows and discuss the difficulties related to the large number of degrees of freedom
and the discretization. We will present results for instantons in a variety of scenarios and additional results related to
large deviations for the 2D stochastic Navier-Stokes equations. Finally, we will discuss the applicability to more complex
turbulent flows that show bistable behavior, such as the Kuroshio ocean current [11].
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