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Abstract It has been noticed that the “ghost collision” approximation, consisting in counting the number of collisions occurring between
particles moving in a flow without any interaction, leads to an overestimation of the collision kernel in numerical simulations, as well as
in theory. Here, we investigate the effect from the point of view of particles, and relate it to the very wide distribution of the duration
necessary for two particles to separate.

INTRODUCTION

Collisions play a major role in many particle laden flows. Turbulence notoriously leads to a very significant enhancement of
the collision rate, with important applications in the domain of cloud microphysics (formation of raindrops in cumulus
clouds [11, 3]), industrial processes [8, 7] as well astrophysics (planet formation [5]). For such applications, it is important
to determine reliably the collision rate between particles in a turbulent flow.
To this end, a very popular approximation consists in considering “ghost collisions” in numerical simulations of turbulent
flows. In this approximation, one considers particles evolving independently, and merely counts how many times the centers
of two particles reach a distance less than the sum of their radii. Particles are kept in the flow after a (ghost) collision,
and can possibly collide again. This approximation leads to the build-up of correlations between the positions of pairs of
particles, which in turn leads to an overestimation of the collision rate, compared to a more realistic situation where particles
collide and react in the flow [4]. In a previous contribution, we estimated quantitatively the error induced by using this
technique [12]. We furthermore argued how the ghost collision approximation leads to incorrect theoretical estimates, when
not properly taking into account the non-persistence of the flow, as is the case for the famous Saffman–Turner theory [10].
Our estimates were based on a direct comparison between calculations using the ghost collision approximation on the one
hand, and simulations where particles are taken out after they have collided, on the other hand. Here, we relate the error
obtained when using the ghost collision approximation to the statistics of separation between two particles. Our approach is
inspired by a recent work, which noticed that the long time that particles can spend very close to each other can affect their
dispersion properties [9]. We show here that understanding these properties is also very important for the determination of
the collision rates.

NUMERICAL SIMULATIONS AND RESULTS

We consider particles whose radius is small compared to the smallest scales of the flow a � η and whose density is large
compared to the fluid’s density ρp � ρ f . Therefore the simplest form of the Maxey–Riley–Gatignol equations [6, 2]

d
dt

X(t) = V(t),
d
dt

V(t) =
u(X, t) − V (t)

τp
, τp =

2
9
ρp

ρ f

a2

ν
(1)

where ν is the kinematic viscosity of the fluid, is sufficient to determine the trajectories of the center of mass of the particles.
The work presented in this abstract has been carried out by using a turbulence-like velocity field u(x, t), generated in practice
by kinematic simulations [1]; work using a turbulent velocity field, obtained with the help of fully resolved direct numerical
simulations is under way. The Stokes number St = τp/τη, that compares the particle relaxation time to the Kolmogorov
time of the flow, is the relevant dimensionless quantity. Here, we restrict ourselves to St = 1.
In Figure 1 we chose to show the distance between two pairs of particles that eventually collide. As can be seen from the
magnification on the right panel of the figure, the behavior of the two pairs is essentially different. While the one pair (solid
lines) collides only once and separates immediately, the other pair (dotted lines) stays close for a relatively long time—about
one large eddy turnover time. During this time the particles experience a whole series of encounters.
Now one might think that such a long and numerous series of collisions is a very rare case. But as can be seen from Figure 2
sequences of repeated collisions between two particles are not that infrequent. The probability distribution of the number of
collisions experienced by a pair of particles shows an exponential tail, P#col(N) ≈ pN

0 , where p0 ≈ 0.25 from Fig. 2. This
suggests that the occurrence of successive collisions can be understood by a simple Markov process: a pair of particles that
has experienced a collision will collide again with probability p0, and separate with a probability (1 − p0).
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Figure 1. The graph on the left shows the distance d between two pairs of particles normalized by the integral length scale of the flow L
over a very long period of time t. The time is normalized by the large eddy time T of the flow. The straight dotted line indicates the mean
distance between pairs of particles in the flow, assumed to be uniformly distributed. The right panel shows a zoom into the region, where
the two pairs collide. The straight line in this panel shows the minimal distance where a collision occurs.
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Figure 2. The probability P#col(N) for a colliding pair of particles to experience N collisions—it is approximately exponential.

CONCLUSION

With the help of a simplified model of turbulent flow, we have demonstrated how two particles may approach each other
and stay together for a quite long time. We have shown that this behavior is related to the overestimation of the collision
kernel, using the ghost collision approximation. The detailed understanding of this process may lead to improvements of
existing models for particle collisions in turbulent flows.
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