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Abstract The spectra for Gross-Pitaevskii turbulence are obtained within a spectral closure approximation. The spectral closure
approximation reduces to conventional weak wave turbulence (WWT) theory for weak non-linearity and it is also capable of deriving
the spectrum for strong non-linearity. Spectra in turbulence with strong nonlinear are obtained for both the energy-transfer range and
the particle-number-transfer range.

INTRODUCTION

Bose gases below critical temperatures are in the ordered phase where the order parameter ψ := 〈ψ̂〉 is not 0. Here,
ψ̂ is the field operator and 〈·〉 denote the vacuum expectation. The order parameter may depend on space and time as
ψ(x, t) and its dynamics is described by the Gross-Pitaevskii (GP) equation[2, 5] (also called the nonlinear Schrödinger
equation),

ih̄
∂

∂t
ψ = −ξ2 ∂

∂xi

∂

∂xi
ψ − µψ + gψ∗ψψ, (1)

under a certain approximation. Here, ξ := h̄/
√

2m, h̄ the Planck constant, m the mass of the particles, µ the chemical
potential, g the coupling constant and the summation over repeated spatial coordinate indices are applied. Hereafter, we
use the unit h̄ = 1.
The GP equation (1) can be interpreted as the equations of motion for a fluid by the use of Madelung transformation.
We call the fluid quantum fluid. It is of interest to investigate whether the turbulence of quantum fluid is similar to the
turbulence of ordinary fluid obeying Navier-Stokes equation in some sense. Superfluid component of liquid 4He can be
treated as a quantum fluid and some experiments[4] of liquid 4He in Superfluid phase suggests that the energy spectrum
is similar to the Kolmogorov energy spectrum E(k) ∝ k−5/3 in the ordinary fluid turbulence.
The statistics of quantum fluid turbulence has been investigated also by means of the numerical simulations of the GP
equation [3, 7, 6]. The types of forcing and dissipation are different among the simulations, and the resulting spectra are
also different among each other. Thus, it is not settled from the numerical simulations whether there exist the universal
spectrum for turbulence obeying the GP equation.
Theoretically, the weak wave turbulence (WWT) theory[8, 1] is capable of analyzing the statistics of GP turbulence, when
the non-linearity is small, i.e., the time scale TNL characterizing the nonlinear dynamics is sufficiently longer than the
time scale TL of the linear wave dynamics. However, strong turbulence (ST) where TNL � TL is out of the scope of the
WWT theory.
In the present study, we attempt to derive theoretically the spectrum of the quantum fluid turbulence for the entire inertial
range, not only the WWT region but the ST region, by means of a spectral closure approximation, or in other words, a
two-point closure approximation.

SPECTRAL CLOSURE APPROXIMATION

Let ψk(t) be the Fourier transform of ψ(x, t) with respect to the coordinate variable x. It is convenient to introduce a
doublet (

ψ+
k (t)

ψ−k (t)

)
:=

(
ei(ξ

2k2−µ)tψk(t)

e−i(ξ
2k2−µ)tψ∗−k(t)

)
. (2)

By assuming statistical homogeneity in space, the two-point correlation function Q and the two-point response function
G can be defined by

〈ψαk (t)ψβ−k′(t
′)〉 = Qαβk (t, t′)(2π)3δ(k − k′), (3)〈

δψαk (t)

δψβk′(t′)

〉
= Gαβk (t, t′)(2π)3δ(k − k′), (4)

where 〈·〉 denotes an ensemble average and upper Greece indices denote {+,−}.
Closed equations for Q and G can be obtained by the method of renormalized expansion and truncation. The closure
approximation is essentially GP equation equivalent of the direct interaction approximation (DIA) of the NS equation.



Here, in this abstract, we just denote the equations symbolically as

∂

∂t
Qk(t, t′) = Ak[Q,G](t, t′),

∂

∂t
Gk(t, t′) = Bk[Q,G](t, t′). (5)

Let ρk(t) be the Fourier transform of the density field ρ(x, t) := |ψ(x, t)|2. The two-point correlation function for ρk(t)
is defined by

〈ρk(t)ρ−k(t′)〉 − 〈ρk(t)〉〈ρ−k(t′)〉 = Qρk(t, t′)(2π)3δ(k − k′), (6)

and, within the closure approximation, its equation of motion can be written in terms of Q and G, i.e.

∂

∂t
Qρk(t, t′) = Ck[Q,G](t, t′), (7)

symbolically.
The particle-number per unit volume n and the kinetic and interaction energy per unit volume EK and EI, respectively,
are given in terms of Q and Qρ as

n =

∫
k

Qk(t, t), EK =

∫
k

ξ2k2Qk(t, t), EI =
g

2

(∫
k

Qρk(t, t) + n2
)
. (8)

The particle number n and the energy E := EK + EI are constants of motion.

SPECTRA IN THE CLOSURE

Let TL(k) := ξ−2k−2 be the time scale associated with the linear wave dynamics and TNL(k) be the time scale associated
with Qk(t, t′) and Gk(t, t′). The wavenumber range where TNL(k) � TL(k) [TNL(k) � TL(k)] is called weak wave
turbulence (WWT) [strong turbulence (ST)] range. It is shown that the present closure equations reduce to the equations
in the WWT theory[8, 1] for the WWT range.
We first consider the energy-transfer range, i.e. the energy flux Π(K) from wavenumber range k ≤ K to the wavenumber
range k > K is constant. In that case, we find from the closure equations that TNL(k) = g−1n−1. Then, we have ST
range in k � k∗ and WWT range in k � k∗ with k∗ = ξ−1g1/2n1/2. Let the one-dimensional spectrum F (k) be defined
by

F (k) =

∫
k′
δ(k′ − k)Qk′ . (9)

We find the scaling F (k) ∝ k−2 in the ST range and the scaling F (k) ∝ k−1, which is consistent with the WWT theory,
in the WWT range.
Now we consider the particle-number-transfer range, i.e. the particle-number flux Πn(K) from wavenumber range k ≤ K
to the wavenumber range k > K is constant. We find TNL,n(k) = g−1/2|Πn|−1/2 for the time scale of Q(t, t′) and
G(t, t′). We have F (k) ∝ k−1 in the ST range k � k∗,n and F (k) ∝ k−1/3, which is consistent with the WWT theory,
in the WWT range k � k∗,n with k∗,n = ξ−1g1/4|Πn|1/4.
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