
14TH EUROPEAN TURBULENCE CONFERENCE, 1–4 SEPTEMBER 2013, LYON, FRANCE

PARTICLES IN HOMOGENEOUS SHEAR TURBULENCE
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Abstract We study the dynamics and collisions of (inertial) particles in homogenous shear turbulence. Using statistical measures such
as particle dispersion, relative dispersion, and particle collision rates we investigate the collision kernel. We use this collision kernel to
make predictions on how a set of particles with a certain size distribution evolves in time.

INTRODUCTION

Turbulent flows occurs in various industrial and natural phenomena. In many of these cases, turbulent fluctuations are
coupled to a large scale flow. Homogeneous shear turbulence is the first step in understanding how the mean flow influ-
ences turbulent fluctuations. The flow is homogeneous but non isotropic. Previous studies, e.g. [3, 1], have shown that
streak like patterns reminiscent of turbulent channel flows are observed in numerical simulations of homogeneous, shear
turbulence. In recent years, Lagrangian investigations have shed new light on various fundamental aspects of homoge-
neous and isotropic turbulence [5]. These studies allowed to quantify important phenomena like the clustering of inertial
particles. Lagrangian investigations of homogeneous shear turbulence are relatively few. To highlight the difference be-
tween homogeneous-isotropic and homogeneous-shear turbulence, in Figure 1 we show the dispersion of particles from
a point source. It is clear that the presence of shear introduces an additional dispersion mechanism in the system. More
strikingly, a recent study [1] has shown that for inertial particles anisotropic behavior occurs even at scales where the
carrier flow is already isotropic. Thus to understand collision kernels, both small and the large scales of turbulence must
be investigated.
Pseudo-spectral codes in combination with particle tracking are commonly used in many applications [5]. The spectral
code solves the flow field by means of direct numerical simulations in an Eulerian approach, while the particle trajectories
are obtained by a Lagrangian approach. For homogenous and isotropic turbulence the particle collision kernel has been
investigated and in particular it was shown that gravity changes the collision kernel [2]. In this study we want to investigate
if this is the case also for homogeneous shear turbulence.

Figure 1. Trajectories of tracers in a homogeneous shear flow. All tracers started from the purple line and the mean flow is shown on
the right hand side.

NUMERICAL SIMULATION AND RESULTS

We employ the classic Rogallo scheme to numerically integrate homogeneous shear turbulence [4]. Here the frame of
reference moves with the main flow, thus the frame of reference is straining over time. In order to keep the frame of
reference from deforming too much, a remesh step of the flow field must be performed after every S∆t simulation time



steps. Here S indicates the dimensionless shear rate and ∆t the length of the simulation time step. In a later stage also
gravity will be added in order to get more realistic collision conditions like the ones in clouds.
Consider a flow with a mean velocity U = (Sy, 0, 0) and fluctuations u ≡ (u, v, w). The Navier-Stokes equations for the
fluctuations u are

Dtu + Sy∂xu + Svêx = −∇p+ ν∇2u, and (1)
∇ · u = 0, (2)

where Dt = ∂t + u · ∇ is the material derivative, S is the shear rate, êx is the unit vector along x-direction, p is the
pressure, and ν is the kinematic viscosity of the fluid. The second and the third term on the left hand side correspond to
the advection of the fluctuations by the mean flow and the modification of the strength of the fluctuations by the shear.
The boundary conditions are assumed to be shear periodic i.e., u(x+ 2πSt, y + 2π, z + 2π) = u(x, y, z).
Using Rogallo’s transformation

x′ = x− Sty,
y′ = y, and

z′ = z.

and working in the frame of reference that deforms with the mean flow, the Navier-Stokes equations are modified to:

Dtu + Svêx = −∇p+ ν∇2u, and (3)
∇ · u = 0. (4)

where the derivatives are now with respect to the primed variables. The prime symbol is not shown explicitly for conve-
nience. Note that since we are working in the frame that deforms with the mean shear the advection of the mean flow is
removed and the solutions in this frame are periodic. Therefore we can now work with standard Fourier transforms.
We validate our numerical simulations against earlier studies of [3, 1]. We choose S = 0.5, ν = 5 · 10−3, and a cubic
box with each side of length 2π. The plot in Fig. 2(left) shows the time evolution of energy for the homogeneous, shear
flow. Similar to the earlier studies of [3, 1] we find sharp jumps in the evolution of energy. Furthermore, the probability
distribution function of the horizontal component of velocity is Gaussian, whereas the vertical component is non-Gaussian
2 (middle-right).
We will discuss this algorithm, the first results on particle trajectories in homogeneous shear turbulence, and the implica-
tions for the collision kernel.

Figure 2. (left) Time evolution of turbulent kinetic energy E(t) = 1
L2

∑
|u2|. Notice the sharp jumps in the time-evolution of the

energy. Pdf of the horizontal (center) and vertical (right) component of the velocity. Unlike homogeneous, isotropic turbulence the
vertical component pdf is non-Gaussian.
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