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Abstract We investigate through numerical simulations the spectralproperties of the turbulence generated during the nonlinear evolu-
tion of a Lamb-Chaplygin dipole in a stratified fluid for a highReynolds numberRe = 28000 and a wide range of horizontal Froude
numberFh ∈ [0.0225 0.135] and buoyancy Reynolds numberR = ReFh

2
∈ [14 510]. A spectral analysis shows that this transition

is dominated by two kinds of transfers: first, the shear instability induces a direct non-local transfer toward horizontal wavelengths of
the order of the buoyancy scaleLb = U/N , whereU is the characteristic horizontal velocity of the dipole andN the Brunt-Väisälä
frequency; second, the destabilization of the Kelvin-Helmholtz billows and the gravitational instability lead to small-scale weakly strat-
ified turbulence. We show that the anisotropic spectra at themaximum of dissipation share many characteristics with those obtained
from numerical simulations of forced stratified turbulenceand from measurements in the atmosphere and in the ocean. Thearticle
presenting this study [2] is the subject of a Focus on Fluids article [10].

THE MECHANISMS OF THE TRANSITION TO TURBULENCE

The evolution of a counter-rotating vortex pair in a stratified fluid has been extensively studied, in particular becauseit
is one of the simplest flow on which the zigzag instability develops and from which the buoyancy length scale naturally
emerges as the vertical length [4, 3, 5]. Recently, [6], [11]and [1] have investigated the nonlinear development of the
zigzag instability. They have shown that both the shear and gravitational instabilities appear at high buoyancy Reynolds
number when the zigzag instability has a finite amplitude leading to a transition to turbulence.
In order to investigate the mechanisms of this transition and to analyse the spectral properties of the turbulence, we have
performed a set of high resolution numerical simulations for a high Reynolds numberRe = 28000. The numerical
simulations use a weak hyperviscosity and are therefore almost DNS. Figures 1(a,b,c) present the time evolution of the
density field forFh = 0.09 in a horizontal cross-section at the level at which the shearinstability appears. Byt = 3.3, the
amplitude of the bending deformations is large but no secondary instability is active yet. Att = 3.8, small-scale wiggles
can be seen (Figure 1b). Eventually, the small-scale turbulence invades a large portion of the domain (figure 1c).
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Figure 1. Horizontal cross-sections of the density field at the level at which the shear instability begins to develop for three times.

SPECTRAL ANALYSIS WITH VARIATION OF FH AND R

Figure 2 presents horizontal (continuous curves) and vertical (dashed curves) compensated kinetic spectraEK(kh)εK
2/3kh

5/3

andEK(kz)εK
2/3kz

5/3 obtained from simulations with different values ofFh but the same Reynolds number. The spec-
tra have been time-averaged over∆t = 0.3 around the time where the total dissipation is maximum. The horizontal
spectra of kinetic energy exhibits aεK2/3k

−5/3
h power law (wherekh is the horizontal wavenumber andεK is the dissipa-

tion rate of kinetic energy) fromkb = 2π/Lb to the dissipative scales, with an energy deficit between theintegral scale
andkb and an excess aroundkb. The vertical spectra are very steep nearkz = kb and show a tendency to follow ak−3

z

slope. They flatten when approaching the horizontal spectraat large wavenumbers and their slope tends tok
−5/3
z except

for the highest stratificationFh = 0.0025, where the two curves approach each other only in the dissipation range (i.e. the
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Figure 2. Horizontal and vertical compensated spectraEK(ki)ε
−2/3
K

ki
5/3 as a function of the dimensionless wavenumberki/kb for

four runs with different values of the Froude numberFh = 0.0025, 0.045, 0.09 and 0.135 but the same Reynolds number. Each curve
is the average over time interval∆t = 0.3 near the maximum of the dissipation. The thin straight line indicates thek−3

z power law and
the horizontal thick line theCεK

2/3k−5/3 law, withC = 0.5.

Ozmidov scale is of the order of the Kolmogorov scale). We have shown that the vertical spectra can be expressed as
E(kz) = CNN2k−3

z + CεK
2/3k

−5/3
z whereCN andC are two constants of order unity.

Thus, the anisotropic spectra share many characteristics with those obtained from numerical simulations of forced strat-
ified turbulence and from measurements in the atmosphere andin the ocean. This is remarkable because the initial flow
is very simple and not turbulent. Moreover, the fundamentaldifference between a transition toward turbulence and de-
veloped turbulence has to be stressed. With only two vortices interacting, the dynamics at large horizontal scales is
dominated by the zigzag instability and there is no stronglystratified cascade along the horizontal. This contrasts with
numerical simulations of forced stratified turbulence which exhibit a forward strongly stratified cascade but for whichthe
overturning motions at the buoyancy length scale and beyondare not resolved or only weakly resolved due to the use of
strongly anisotropic numerical meshes [7, 8, 9].
Since the transition in the vertical spectra happens at the Ozmidov length scale, it is tempting to conclude that the over-
turning motions at the buoyancy scale are strongly anisotropic. However, this is not the case. Indeed, we have shown that
the very steep vertical spectrum is mainly due to the large horizontal scales of the dipole that is strongly deformed along
the vertical by the zigzag instability. In contrast, the vertical spectrum computed with spectral modes with horizontal
wavenumbers larger than the buoyancy wavenumberkb does not present anyk−3

z power law but exhibits ak−5/3
z power

law from a vertical wavenumber scaling like the Ozmidov wavenumberko down to the dissipative range.
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