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Abstract Absolute instabilities are investigated in the Taylor–Couette system with axial flow and eccentricity of the cylinder axes, using
the Briggs–Bers criterion with a pseudospectral method. Domains of absolute instability are determined for a ratio of radii η = 0.5, and
eccentricities e ≤ 0.7. Reynolds numbers based on the inner cylinder rotation ReΩ and mean axial advection Rez are taken below 50
and 400 respectively. Five modes of instability are studied, respectively the toroidal Taylor vortex, and the left- and right- handed helical
vortices of “pseudo-azimuthal” wavenumber 1 and 2, which include the critical modes of the convective instability. A general criterion
is presented to discriminate genuine pinches from spurious saddle points in the vicinity of third-order saddle points ∂2D/∂k2 = 0 of
the dispersion relation D in the complex wavenumber k plane.

PARAMETRIC STUDY OF ABSOLUTE INSTABILITIES

Eccentric Taylor–Couette–Poiseuille flow is a basic model for annular flow of mud involved in the drilling of oil wells.
The axial component of the flow is necessary to carry the rock cuttings from the bottom of the well up to the surface, while
azimuthal motion is due to drillstring rotation. Eccentricity is caused by the flexibility of the drillstring, slowly shifting
its axis along the well. The occurrence of absolute instabilities, namely the propagation of a growing perturbation both
upstream and downstream in the well, could cause detrimental transition to complex hydrodynamic régimes, including
Taylor vortices, and result in higher pressure drops, increased frictional torque, etc.
Considering axially invariant basic flows and infinitesimal instability waves of complex axial wavenumber k and fre-
quency ω, absolute instabilities are sought in this flow by an analysis of the saddle points ∂D/∂k = 0 of the dispersion
relation D(k, ω) = 0 (Huerre & Monkewitz [7, 8]).
In the axisymmetric case, absolute instabilities have already been the object of a number of theoretical and experimental
studies, from the initial work of Tsameret & Steinberg [12], Babcock et al. [2] to recent analyses including that of
Martinand et al. [10] and Altmeyer et al. [1]. Recent theoretical work concerning the eccentric version of this flow has
been concerned with temporal stability [9], which predicts the thresholds for convective instabilities associated to an
amplifier behaviour of the flow. The present work complements the description of the linear dynamics by considering the
case of hydrodynamic resonance. The same pseudospectral Fourier–Chebyshev method is used in this numerical study
involving the incompressible Navier–Stokes equations.
Domains of absolute instability are determined in the four-parameter space involving rotational and axial Reynolds num-
bers ReΩ and Rez , respectively based on inner cylinder rotation and mean axial flow. Geometrical parameters are the ratio
of radii η and the eccentricity e. Parametric studies are conducted for η = 0.5, e ≤ 0.7, Rez ≤ 50 and ReΩ ≤ 400.
Only the critical modes responsible for convective instabilities in this range are considered: the toroidal Taylor vortices,
and the left-handed helical vortices of “pseudo-azimuthal” wavenumbers m = 1 and 2 (defined by continuation of the
axisymmetric modes of corresponding azimuthal Fourier component). For the sake of completeness, right-handed helical
vortices with m = 1, 2 are investigated as well.

CRITERION TO DETERMINE PINCH POINTS IN THE VICINITY OF THIRD-ORDER SADDLE POINTS

Following the Briggs–Bers [3, 4] criterion, absolute instabilities are found by locating the saddle points of the dispersion
relation, as mentioned above. For the instability to be causal, it is also necessary that the two spatial branches k(ω)
(defined by D(k(ω), ω) = 0) coalescing at the saddle point be emanating from distinct halves of the complex k plane
when ωi

1 is positive and large enough. When for large ωi, ki > 0 (resp. ki < 0), the spatial branch is denoted k+ (resp.
k−) and corresponds to an exponentially damped spatial response to localized forcing for z > 0 (resp. z < 0). A causal
saddle point is termed a pinch point, and other saddle points have no influence on the long-term behaviour of the flow. To
each saddle point of absolute wavenumber k0 in the complex k plane corresponds a branch point of absolute frequency
ω0 in the complex ω-plane. The pinch point associated with the maximum absolute growth rate ω0,i dictates the resonator
dynamics of the open flow: an absolute instability will develop if and only if ω0,i > 0.
Dispersion relations of complex systems may contain a large number of saddle points, among which only a few are causal.
The subtlety of the Briggs–Bers criterion consists in discriminating the genuine pinch points from other spurious saddle
points before finding the most unstable of them. Different pinch points may dictate the dynamics of the flow as parameters

1Subscripts “r” and “i” refer to the real and imaginary parts of complex numbers.
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Figure 1. (a) Three k-branches (k+/k−1 /k
−
2 ) emanating from third-order saddle point at k0 = 1.0223 − 3.2310i for η = 0.5,

e = 0.285, ReΩ = 403.21, Rez = 50.115, and corresponding to contours of constant ωr = ω0,r = 0.4908, with ωi increasing from
ω0,i = 0. Solid (resp. dashed) lines in zoom are equispaced contours of constant ωr ≥ ω0,r (resp. ωr < ω0,r). (b) η = 0.5, Rez = 50.
Solid/dashed lines: zero group velocity threshold for the two saddle points colliding for (k0, ω0). Zones: 1 two pinches k+/k−1 &

k+/k−2 , 2 one pinch k+/k−2 & k−1 /k
−
2 , 3 one pinch k+/k−1 & k−1 /k

−
2 .

are varied. Extensive computations are usually resorted to (e. g. Davies [5], Meliga [11]) in order to uncover the complex
dynamics of these flows, as no general theory is available to anticipate the nature of the saddle points.
In eccentric Taylor–Couette–Poiseuille flow, the most absolutely unstable mode is always the propagating Taylor vortex.
However, the pinch point dictating the dynamics is found to switch within a set of three distinct saddle points associated
to this same mode. For specific parameter values, the saddle points collide by pairs, resulting in third-order saddle points
for which ∂2D/∂k2 = 0. Using a Taylor expansion in the neighbourhood of this point, also denoted by subscript “0”, it
follows that:

ω − ω0 ∼ 1

6

∂3D

∂k3

∣∣∣∣
0

(k − k0)
3,

showing the coalescence of three distinct spatial branches at the “double saddle point” (see figure 1(a)). For neighbouring
sets of control parameters, the “double saddle point” separates into two distinct saddle points, each of them resulting from
the collision of two of these three k branches. In order to know if the resulting saddle points are pinches or not, it suffices
to determine numerically the nature, k+ versus k−, of the spatial branches of the “double saddle point” (or “super branch
point”, Healey [6]). Using a local development of the dispersion relation and asymptotic matching, the spatial branches
forming the simple saddle points can be connected to the three k branches. The method is used to split the parameter
space into three distinct regions, depending on the pair of branches colliding (see figure 1(b)).
The method allows significant time savings for predicting absolute instabilities in the presence of multiple saddle points
and was applied with success and robustness to the eccentric Taylor–Couette–Poiseuille flow. It was found that unlike
convective instabilities, the critical absolutely unstable mode is invariably the propagating Taylor vortex flow, but asso-
ciated to three different pinch points. Axial flow has a significant stabilising effect for all eccentricities. Surprisingly, at
high Rez , eccentricity is generally destabilising in the sense of absolute instabilities, whereas it is always stabilising in the
case of convective instabilities. Critical ReΩ for absolute instabilities are much higher than for convective instabilities.
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