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LENGTH SCALE TO DETERMINE THE RATE OF ENERGY DISSIPATION IN TURBULENCE
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Abstract The mean rate of energy dissipation 〈ε〉 per unit mass of turbulence is often written in the form of 〈ε〉 = Cu〈u2〉3/2/Lu,
where 〈u2〉1/2 is the root-mean-square fluctuation of the longitudinal velocity u and Lu is its correlation length. However, Cu is
known to depend on the large-scale configuration of the flow. We define the correlation length Lu2 of the local energy u2 and find that
Cu2 = 〈ε〉Lu2/〈u2〉3/2 does not depend on the flow configuration. The independence from the flow configuration is also found for
the two-point velocity correlation and so on when Lu2 is used to normalize the scale.

INTRODUCTION

Since the kinetic energy of turbulence is transferred from large to small scales and is eventually dissipated into heat, the
mean rate of energy dissipation per unit mass 〈ε〉 is determined by parameters of the large scales [1]:

〈ε〉 = C
〈u2〉3/2

L
. (1)

Here C is a dimensionless coefficient, 〈u2〉1/2 is the root-mean-square fluctuation of the longitudinal velocity u along
position x, and the length L represents the large scales or equivalently the sizes of the energy-containing eddies. The
energy of such eddies is of the order of 〈u2〉. Their time scale is of the order of L/〈u2〉1/2. As a result, 〈u2〉3/2/L is of
the order of the mean rate at which their energy is transferred to the smaller eddies.
Traditionally, the length L is defined as the velocity correlation length Lu [2], which is obtained by integrating the two-
point velocity correlation 〈u(x + r)u(x)〉:

Lu =

∫ ∞
0

〈u(x + r)u(x)〉dr

〈u2〉
. (2a)

However, Cu = 〈ε〉Lu/〈u2〉3/2 is not universal and depends on the large-scale configuration of the flow [3, 4]. That is, Cu

is determined by the boundary condition, external force, and so on for the turbulence. The implication is that 〈u2〉3/2/Lu

is not proportional to the mean rate at which the kinetic energy is removed from the energy-containing eddies. It is hence
concluded that Lu is not proportional to the typical size L of the energy-containing eddies.
This conclusion is important because Lu has been used as a representative of the large scales, not only in studies on Eq. (1)
but also in many other studies. It is desirable to find a more universal definition of L. We define L as the correlation length
Lu2 of the local energy u2 [5, 6], by integrating its two-point correlation 〈[u2(x + r) − 〈u2〉][u2(x) − 〈u2〉]〉:

Lu2 =

∫ ∞
0

〈[u2(x + r) − 〈u2〉][u2(x) − 〈u2〉]〉 dr

〈(u2 − 〈u2〉)2〉
. (2b)

For several flows of fully developed turbulence, Cu2 = 〈ε〉Lu2/〈u2〉3/2 is studied over a range of the Reynolds number
Reλ = λ〈u2〉1/2/ν. Here λ = [〈u2〉/〈(∂xu)2〉]1/2 is the Taylor microscale and ν is the kinematic viscosity.

TURBULENCE DATA

The data used here are those of the streamwise velocity fluctuation u obtained experimentally in a wind tunnel [6]. They
are for fully developed grid turbulence G1–G5 (Reλ = 153–436), boundary layer B1–B6 (Reλ = 455–2097), and jet
J1–J6 (Reλ = 709–3315), among each of which the flow configuration was the same. We obtained these data with a
hot-wire anemometer and processed them with Taylor’s frozen-eddy hypothesis. Since they are long enough, the resulting
statistics are considered to be reliable.

RESULTS

Figure 1 shows Cu = 〈ε〉Lu/〈u2〉3/2 and Cu2 = 〈ε〉Lu2/〈u2〉3/2 as a function of Reλ. Since a log scale is adopted for
Reλ, it is emphasized that Cu and Cu2 decrease with an increase in Reλ. Its values are not high enough for the complete
separation of the energy-containing large scales from the energy-dissipating small scales. If Reλ were increased still more,
Cu and Cu2 would become independent of Reλ [3, 4]. More importantly, among the grid turbulence, boundary layer, and
jet, while the sequences of Cu do not align [Fig. 1(a)], those of Cu2 do align [Fig. 1(b)]. Thus, Cu2 is independent of the
flow configuration. We favor Lu2 as the typical size L of the energy-containing eddies.
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Figure 1. Coefficients Cu and Cu2 as a function of Reλ in
grid turbulence G1–G5 (•), boundary layer B1–B6 (N), and jet
J1–J6 (¥). The dotted curve is a fit of Cu2 ∝ Re−0.51
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Figure 2. Correlations of u and of u2 and moment 〈δu2
r〉 as a

function of r/Lu2 in G5 and B1 and in B6 and J4 (solid curves),
normalized with the values at r = 0.

DISCUSSION

For the mean rate of energy dissipation in the form of 〈ε〉 = C〈u2〉3/2/L, it has been traditional to define L as the velocity
correlation length Lu [2]. However, Cu = 〈ε〉Lu/〈u2〉3/2 depends on the large-scale configuration of the flow [3, 4]. We
have defined L as the correlation length Lu2 of the local energy u2, studied Cu2 = 〈ε〉Lu2/〈u2〉3/2 for several flows of
fully developed turbulence, and found that Cu2 does not depend on the flow configuration [6]. Not Lu but rather Lu2 is
proportional to the typical size L of the energy-containing eddies, so that 〈u2〉3/2/Lu2 is proportional to the mean rate at
which the kinetic energy is removed from those eddies to be eventually dissipated into heat.
The independence from the flow configuration is also found for other statistics when the scale r is normalized with Lu2 .
Figure 2 shows the two-point correlations and the second-order moment of δur = u(x + r) − u(x) for pairs of flows
where the flow configuration is different but the value of Reλ is similar. The two curves in each of the pairs are identical
at r . Lu2 . Thus, Lu2 does represent the energy-containing eddies that lie at the top of the energy cascade.
The existing discussions on C = 〈ε〉L/〈u2〉3/2 often assume that C is independent of the Reynolds number Reλ [2]. They
have to be corrected at Reλ . 103, where we see Cu2 ∝ Re−α

λ in Fig. 1. The large-scale Reynolds number is L〈u2〉1/2/ν

∝ Re2−α
λ . The number of degrees of freedom is (L/η)3 ∝ Re9/2−3α

λ , where η = (ν3/〈ε〉)1/4 is the Kolmogorov length.
Also if, say, Loitsyansky’s invariant holds as ∝ L5〈u2〉 in decaying isotropic turbulence, ∂t〈u2〉 ∝ −〈ε〉 yields the decay
law 〈u2〉 ∝ t−(10−5α)/(7−5α). These relations could have universal coefficients for L ∝ Lu2 .
Since our data set is limited, our results have to be examined in future with more extensive sets of experimental or
numerical data. Nevertheless, it is already certain that Lu2 is preferable to the traditional length Lu as the typical size L
of the energy-containing eddies or equivalently as the representative of the large scales.
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