
14TH EUROPEAN TURBULENCE CONFERENCE, 1–4 SEPTEMBER 2013, LYON, FRANCE
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Abstract Purely dissipative eddy-viscosity subgrid-scales (SGS) stress models are broadly used in large eddy simulations (LES) of
turbulent flows. The actual SGS behavior is however locally not purely dissipative. In this sense, more advanced models are desirable.
Such a model is presented hereafter and is tested in decaying homogeneous isotropic turbulence (HIT). We propose a dynamic mixed
model that accounts for both the Reynolds term and the cross-term of the SGS stress tensor. The model is shown to behave in good
agreement with the reference DNS.

GOALS AND MOTIVATIONS

We consider large-eddy simulation (LES) of turbulent flows. Most popular approaches for the subgrid-scale (SGS)
stress modeling are, in one way or another, based on a purely dissipative formulation. Typically, the SGS stress T̃ij =

ũiuj − ˜̃uiũj is modeled as T̃M
ij = −2νeS̃ij , with S̃ij , the resolved strain rate and with a closure equation for the SGS

eddy viscosity νe. The simplest of those is the model by Smagorinsky [6], using νe = C∆2|S̃| with ∆, the local effective
grid size. A dynamic version was later proposed by Germano et al. [2]. Attempts at discriminating between the scales
of the flows were made by Hughes et al. with the so-called variational multiscale (VMS) model [3]. It was designed
so as to focus the dissipation on the smallest scales of the LES field only, and was performed using a sharp Fourier cut-
off to discriminate between large and small scales of the LES field. Regularized versions thereof were later developed;
also the "regularized variational multiscale" (RVMS) model by Jeanmart and Winckelmans [4]. These models have the
form T̃M

ij = −2νeS̃
s
ij , where the small scales ũsi are obtained from an appropriate high-pass filter developed so as to

be easily and efficiently applied in physical space. The effective viscosity νe is itself evaluated using either |S̃| or |S̃s|
and the local effective grid size. Those models are still solely dissipative and amount to a more complex diffusion operator.

We recall that the SGS stress tensor is actually made of two distinct parts: the Reynolds term and the cross-term: T̃ij =

ũ′iu
′
j + ( ˜̃uiu′j + ũ′iũj) = R̃ij + C̃ij . The spectral behavior of those two terms is intrinsically different, as also shown by

Wang and Oberai [7]. See also Fig. 1 in the present study. This motivates developing a mixed model including a separate
closure for each term. The Reynolds term mainly behaves as a purely dissipative operator, locally and globally, whereas
the cross-term has a more complex behavior: it is globally dissipative (also at all wavenumbers, see Fig 1), yet it can
have significant local backscatter. It is thus reasonable to use one of the aforementioned purely dissipative models for the
Reynolds term and to focus our additional effort on modeling the cross-term.
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Figure 1. A priori analysis of the dissipation spectrum due to the cross-term (εC ) and to the Reynolds term (εR) for a 483 field truncated
from a 5123 DNS field of HIT at Reλ = 150.

A DYNAMIC MIXED MODEL

The final model has the general form T̃M
ij = R̃M

ij +C̃M
ij = Cr r̃

M
ij +Ccc̃

M
ij . As previously stated, we use either a Smagorin-

sky or a RVMS model for the Reynolds term. The cross-term model is based on a scale-similarity argument, with a further
modification in order to obtain Galilean invariance. This model is also somewhat linked to the scale-similarity model of
Bardina [1]. Several discrete filters (sine filters, implicit filters, sharp truncations) and variants of the model are investi-



gated in a priori analyses. We also keep in mind that one constraint is that the model must be efficiently usable in physical
space. The Cc coefficient is calibrated in such a way that the average dissipation of the cross-term model is initially the
same as that of the cross-term from the reference DNS. The cross-term model is seen to be quite good, apart from a small
lack of dissipation at the smallest scales of the LES grid. This flaw can, in part, be corrected by preferring the RVMS
model to the Smagorinsky model in the choice for the Reynolds term model. The Reynolds term model constant remains
to be determined. Two approaches are compared: constant Cr (i.e. "calibrated") and dynamic Cr.

A dynamic method is thus also developed in order to determine Cr on the fly. It is here done in a way so as to obtain the
same average dissipation as that of a dynamic Smagorinsky model used solely and computed on the same LES field. This
methodology is the same as that proposed by Park and Mahesh [5]. LES of decaying HIT are performed with various
levels of truncation, filters and Reynolds term models. The results demonstrate the good performance of the dynamic
mixed model: examples are provided in Fig. 2. For both 643 and 483 (i.e. more challenging) LES, the obtained spectrum
is closer to that of the reference DNS than when using the dynamic Smagorinsky model, over the range of small to medium
wavenumbers. For the 643 LES, it is actually close to the reference DNS over the whole range of wavenumbers.
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Figure 2. Energy spectra of LES of decaying HIT at time tUrms,0/L0 = 3.6. The initial field was that of a truncated 5123 DNS at
Reλ = 150: DNS (bullets connected by thick solid), dynamic mixed model (bullets connected by thin solid) and dynamic Smagorinsky
model (bullets connected by dash).
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