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THREE HELICAL VORTICES : DYNAMICS AND INSTABILITY

Rossi Maurice1,2 & Delbende Ivan2,3

1CNRS, d’Alembert, 75232 Paris Cedex 05, France, Maurice.Rossi@upmc.fr, 2UPMC, Université Pierre et
Marie Curie-Paris 6, 3LIMSI–CNRS, BP 133, 91403 Orsay Cedex, France, Ivan.Delbende@limsi.fr

Abstract We consider the dynamics of three helical vortices using a DNS code with built-in helical symmetry which allows to reach
higher Reynolds numbers The dynamical evolutions of these three-dimensional vortices are presented according to helix pitch of the
system.

GENERAL HELICAL PROBLEM
Many systems develop helical vortices in their wake. Such flows can be assumed, at least locally, to be helically sym-
metric, i.e invariant through combined axial translation of distance ∆z and rotation of angle θ = ∆z/L around the same
z-axis, where 2πL stands for the helix pitch. We present results obtained using a new DNS code with built-in helical
symmetry [1].

This is done by introducing the orthogonal Beltrami basis (~er, ~eϕ, ~eB) consisting of a local orthonormal vector basis
containing the usual radial unit vector ~er, a unit vector directed along helical lines called the Beltrami vector:

~eB(r, θ) = α(r)
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with
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and a third unit vector
~eϕ(r, θ) = ~eB × ~er = α(r)

[
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r

L
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]
. (3)

For a vector field, helical symmetry means that it can be written as

~u = ur(r, ϕ, t)~er(θ) + uϕ(r, ϕ, t)~eϕ(r, θ) + uB(r, ϕ, t)~eB(r, θ) . (4)

The three components ur, uϕ and uB depend only on r, ϕ and t, and are such that

uϕ = α(r)
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)
and uB = α(r)
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r
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)
, (5)

where uz and uθ are velocity components in the cylindrical coordinate system. Using this decomposition, it is then
possible to write the Navier–Stokes equations restricted to helically symmetric solutions. This is performed using a
generalized ψ–ω method. The streamfunction ψ: is here related to components ur and uϕ via

ur =
1
r

∂ψ

∂ϕ
, uϕ = −α(r)

∂ψ

∂r
. (6)

The vorticity field can be expressed as

ω = ωB(r, ϕ, t) ~eB + α∇
(
uB(r, ϕ, t)

α

)
× ~eB . (7)

The vorticity component along ~eB is linked to the streamfunction ψ as well as to the velocity component uB by

ωB = −Lψ +
2α2

L
uB (8)

where the linear operator L stands for a generalized Laplacian operator
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(·) . (9)

The total vorticity and velocity fields are hence given by only two scalar fields ωB(r, ϕ, t) and uB(r, ϕ, t) since the
streamfunction ψ(r, ϕ, t) is slaved to these variables through equation (8).

The flow evolution can thus be described by only two dynamical equations: one for quantity ωB(r, ϕ, t) and one for
uB(r, ϕ, t). The formulation turns out to be a generalisation of the standard 2D ψ–ω method. In addition, for helically



symmetrical flows, quantities ωB and uB are 2π-periodic with respect to variable ϕ = θ − z/L. In the code, these fields
can thus be expressed as Fourier series along ϕ.

The present code is able to simulate the viscous dynamics of distributed vorticity profiles. Such an approach contains
the effects of 3D vortex curvature and torsion in a simple way and allows one to reach higher Reynolds numbers when
compared to a full 3D DNS.

THREE HELICAL VORTICES

In this framework, the long-time (or equivalently far-wake) dynamics of regularly spaced helical vortices is investigated.
We focus here on the case of three identical vortices regularly spaced (see fig. 1), and simulate their dynamics as their
pitch L and Reynolds number are varied.

At large L, a “classical” three-vortex merging takes place, which resembles the 2D two-vortex merging with some dif-
ferences. When L is reduced, the angular rotation speed that characterizes the three vortex systems around the system
axis, slows down by self-induced vorticity effects and the merging necessitates longer and longer times to occur. This
phenomenon is explained by following the interplay between vorticity and streamfunction in the co-rotating frame of
reference, and tracking the location of hyperbolic points of the streamfunction. At low L-values, typically less than 1, the
exponential instability described by Okulov and Sørensen [2] is obtained, resulting in various grouping and merging sce-
narii at the nonlinear stage of evolution. At intermediate L-values of the order of 1, only viscous diffusionacts, resulting
in a slow viscous type of merging.

Note that other types of instability which are purely 3D are not described within this purely helical framework. Instead,
the helical code run on a short period of time allows one to generate a quasi-steady flow state which may then be used to
investigate such instabilities.

Figure 1. Snapshot of the three helical vortex system: isocontours (black) and isosurface (red tube) of the helical vorticity. The colored
disk materializes the 2D computational domain, from which the vortex structure can be extended to 3D.
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