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Abstract There are two distinct physical mechanisms that can induce transition in the class of fully developed swirling flows in an
annulus, viz. the Tollmien-Schlichting and the Taylor mechanisms. The former is expected to dominate when the flow is maintained
primarily by the imposed axial pressure gradient, and the latter to govern when it is rotation of the inner cylinder. There are several
distinguishing physical features between these mechanisms, a salient one of which is the formation of a critical layer in the Tollmien-
Schlichting mechanism and the absence of such a layer in the Taylor mechanism. The work submitted herewith for presentation
at ETC 14 is an attempt to answer the question posed in the title. The study is done through investigation into characteristics of
small-amplitude disturbance propagation conducted through application in parallel of both analytical and numerical techniques.

INTRODUCTION AND SCOPE OF THE WORK

The class of flows in question, which is the fully developed swirling flow in the annulus between concentric circular
cylinders, is topologically characterised by helically wound streamlines. Transition is inducible in this class of flows by
two distinct physical mechanisms, referred to in the following as the Tollmien-Schlichting and the Taylor mechanisms
respectively. The decisive steering mechanism for transition in a basic flow of given swirl is its dynamic feature, which
is whether it is maintained predominantly by the imposed axial pressure gradient (for the Tollmien-Schlichting mech-
anism) or by rotation of the inner cylinder about its own axis (for the Taylor mechanism). A measure of the relative

importance of the two mechanisms is the swirl parameter, S;, defined through S; = gr% where, Uycr, = (;R; and
refxzp
2
Urefzp = —;I—M déi S with 2H = R, — R;, in self-explanatory notation. An insight into the physics of the two steering

mechanisms, gained by classical small-amplitude disturbance theory, is that in the Tollmien-Schlichting mechanism,
disturbances causing transition propagate in the form of waves travelling at a certain speed, whereas in the Taylor mech-
anism disturbances are spatially stationary. Classical small-amplitude disturbance theory also reveals the existence of a
critical layer associated with the travelling wave in the Tollmien-Schlichting mechanism, located at a postion at which
the wave speed and the local flow speed are equal to each other. Since Reynolds stresses are primarily generated in the
critical layer, see eg. [1], [2], an understanding of the mechanisms in the critical layer is crucial for treatment of any
turbulent flow, swirling flows being no exception, hence the problem posed in this work. We address the question posed
in the title by examining the solutions for the equations for propagation of small-amplitude disturbances in the class of
swirling flows in question according to classical linear theory. Our work is to be seen against the background of work in
relatively recent publications on this subject, [3], [4], [5], [6].

OUTLINE OF THE PRESENT WORK

The axial and azimuthal velocity components of the basic flow in our problem are those in the fully developed swirling flow
in an annulus with a rotating inner cylinder. These may be written in a self-explanatory notation as: Vg ~ UrefapUas (y)
and Vi ~ UreroUgy (y). Our approach to illuminate the role of the critical layer in the problem is through examination
of the equations for disturbance propagation in this basic flow from a perspective of its two limiting cases, which are
S; — 0 and S; — oo. The starting point for our investigation is the set of linearized equations for disturbances from
which pressure has been eliminated by the two known standard procedures to yield the Orr-Sommerfeld and Squire
equations respectively, and the continuity equation, see eg. [1], [2], [7]. This set may be non-dimensionalised in two
ways, with the semi-gap width H as the reference length and either U, f.p, or U,y as the reference velocity, according
as S; — 0 or S; — oo. We denote the Reynolds number using U,..f4;, as Rers and that using U,..r, as Rer. The
subscript 7'S and T" have been used in that order to denote the dominance of the Tollmien-Schlichting or the Taylor
mechanism respectively. We wish to draw the readers’s/listeners’ attention to the solutions of the disturbance sought in
the well-known wave form,

(Ugs Up, up) = (Ag(y), Ar(y), Ap(y)) exp [i( Az + npp — wt)] + c.c., )

which leads to the dispersion relation of the problem that relates the frequency with the wavenumber and flow parameters.
For axisymmetric disturbances this may be written symbolically as follows:

w :w(ReTS7ReT7€R;)\$)7 (2)



wherein the frequency depends upon three parameters, Rers, Rer, €g, with €g = 555 + R The occurrence of the critical
layer in the flow is crucially dependent upon the real part of the frequency w bemg nonzero , since only then does the
disturbance propagate spatially at a non-zero velocity and the location of the critical layer determinable by setting this
equal to the local flow velocity.

From the perspective of the limiting case of mild swirl for which we choose U,..f,;, as the reference velocity, the
dispersion relation may be written as follows:

wrs = wrs(Rers, S; = 0,€r; Ag). 3)

In the present state of algorithmic development, it is relatively straightforward to solve this eigenvalue problem numeri-
cally, see ([7]). This we have done for a range of parameters .S; and €g, both small, with MATLAB Programs along the
lines of ([7]). The results bring out the dependence of the location of the critical layer on the transverse curvature €, but
no dependence of the same on the swirl S; is discernible. A closer examination of the governing equations shows that
this property is directly inferable from the structure of the equations themselves when formulated in the manner referred
to.

From the perspective of the limiting case of strong swirl, when U, is the appropriate reference velocity, the disper-
sion relation may formally be written in a form analogous to (3) as

wr = wr(Rer, S; — 00, €r; Az), @

a form which shows the dependence of wy on the three parameters, (Rer, €g, S;). However, this, in the authors’ view, is
not very well suited for the present purpose since, in the limit S; = oo it leaves the relation to the solution of the classical
Taylor’s problem, and in particular to the role of the Taylor number as the decisive transition parameter, unclear. This
relation is rendered transparent on rewriting the Orr-Sommerfeld, Squire and Continuity equations in Taylor Variables,
(t,9,9,2; Uy, Uy, Gy) defined through:
t

R@T
and subjecting the equations to the double limiting process e — 0, Rer — oo with ReZ.er = O(1). The product

Re2.er = O(1) may be identified with a Taylor number T'a in which both characteristic lengths H and R; enter. The
physical meaning of the Taylor Variables is evident from a closer inspection of (5), which may be seen to be that the time

{= =y, =9, 8 =x;0, = upRer, iy = ugRer, i, = U, 5)

t is referred to 7 instead of to aOE R , the components of velocity disturbance (., u,) to % 7 instead of to Q; R;, and uy, to
Q;R;. A comparison of (5) with the original work of Taylor shows that this is the set of reference quantities used therein
by Taylor. Noteworthy is the difference in the scales for (u,, u,) and .
The modification of the critical layer on a shift of the transition inducing mechanism from Tollmien-Schlichting’s to
Taylor’s becomes lucid when the Orr-Sommerfeld, Squire and Continuity equations are written in Taylor Variables,
recast in a form that brings out the analytical structure of the coefficient to exhibit the difference between the phase
velocity of the wave and the flow velocity explicitly, and then examine the differential operators at location(s) where the
phase velocity and the flow velocity are equal to each other. To this end the Orr-Sommerfeld, Squire and Continuity
equations are written in a compact matrix notation which is as follows:
& VTa
PA+ (g WUGm(w QA =0, (®)

where P and Q are matrix differential operators operating on the column vector A = (A, A,, A;)7, see also (1). The
equation (6) brings out the dependence of the location of the critical layer on the swirl parameter S;. An analytical
expression for & in the limit S; — oo has been derived. At the time of submitting this abstract to ETC 14, numerical
values of this analytical expression are being evaluated.
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