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Abstract We study self-propelled particles advected by a turbulent flow as a model of microorganisms swimming in a turbulent envi-
ronment. In particular, we consider (spherical) gyrotactic microorganisms, whose swimming direction results from vortical overturning
and fluid acceleration. In such conditions self-propelled particles forms (multi)fractal aggregates, which can be rationalized, in some
limits, in terms of an effective compressibility.

Patchiness in the distribution of plankton in the ocean spans several order of magnitudes in scale from thousands of
kilometers to the sub-centimeter scale [7]. Small-scale heterogeneity directly influences the encounter rate of microor-
ganisms, ruling crucial ecological processes. Observations show that motile microorganisms tend to distribute more
heterogeneously at small scales than non-motile ones [7]. Here, by means of direct numerical simulations (DNS), we ex-
plore a special class of motile microorganisms — characterized by gyrotactic swimming [9] pertaining to several species
of motile algae — and show that small-scale heterogeneity can result from the interplay of motility and turbulent motion.
We model dilute, non-interacting motile microorganisms, smaller than the Kolmogorov scale 7, as self-propelled particles
with velocity given by the sum of the fluid velocity w at the particle position X and the swimming contribution vsp [9],

X =u(X,t)+vsp, (D
with constant swimming velocity vs. Cells are assumed spherical and neutrally buoyant, with the center of mass displaced

by h to the geometric one. As a result of the total torque acting on the cell, the swimming direction p evolves as [9]
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where w is the fluid vorticity and v, = 3v/h is the orientation speed for spherical cells subject to the acceleration A [9].
In a fluid at rest, besides viscous forces, only gravity/buoyancy is acting and thus A = —g = g2. In presence of a flow,
A =a—gwherea = du+u-Vu=—Vp+vV2u+ fis the fluid acceleration given by the Navier-Stokes (NS)
equation for the velocity w of an incompressible (V - u = 0) fluid with viscosity v, pressure p and stirred by a forcing f.
Previous studies on gyrotactic swimmers disregarded fluid acceleration, as mainly focused on non-turbulent flows, where
la] < g. In turbulence, fluid acceleration can locally exceed g [5]. Hence its contribution can become dominant. To
exemplify this effect here, by choosing A = a in Eq. (2), we focus on the limit in which gravity can be neglected.

We study gyrotactic swimming in homogeneous and isotropic turbulent velocity fields of moderate intensity (Rey ~
65 — 100) by means of pseudo-spectral DNS of the NS equation and integrating Eq. (1) and Eq. (2) (with A = a) by
means of a standard Lagrangian scheme. Several populations of swimmers, characterized by different values of v, and
v are uniformly injected with random positions and orientations. The self-propelled particles are then evolved, and their
distribution and orientation studied in statistically steady conditions.

Figure 1a shows the spatial distribution of particles in the turbulent flow. The distribution appears heterogeneous with
strong small-scale patchiness. Moreover, particle positions correlate with regions of high vorticity. In particular, the
smaller the stability parameter S the larger is the effect (Fig. 1b).

Formally, Egs. (1-2) define a dissipative dynamical system evolving in the 2d-dimensional phase space (X ,p) with phase-
space contraction rate —(d + 1)/(2v,)a - p, which is negative on average because p locally orients in the direction a at
least for S < 1 (Fig. 1c¢). This means that swimmers will evolve onto a dynamical attractor of fractal dimension smaller
than the whole phase space, which explains the origin of clustering: if the fractal dimension of the attractor is smaller than
d, clustering in position space (as in Fig. 1) is possible (see Ref. [2] for a conceptually similar phenomenon occurring for
inertial particles). In the limit v, — oo the contraction rate vanishes and therefore swimmers will distribute uniformly.
The argument can be made more quantitative in the limit of fast orienting cells, i.e. when & < 1. In such limit the
swimming direction p becomes parallel to the local direction of the fluid acceleration @ = a/a (Fig. 1¢). So that we can
think of the swimming cells as tracers advected by an effective velocity v =~ u + vsa. While u is incompressible, the
effective velocity field v is not: V - v o« v,V - a being negative (positive) in high vorticity (strain) regions. Therefore,
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Figure 1. (a) Gyrotactic swimmers (dots) in a slab of a 3D turbulent flow; yellow/blue corresponds to high/low vorticity values. (b)
Average square vorticity at particle positions normalized to the fluid value and (c) (@ - p) vs the stability parameter S = VoWrms/@rms.
Circled point corresponds to data in (a). In all cases vs = 0.3u,, (u, being the Kolmogorov-scale velocity intensity).

as it occurs for inertial particles lighter than fluid [1, 4], the swimmers cluster inside vortical structures (Fig. 1a and b).
The divergence of v is proportional to v, clustering is thus expected to increase with the swimming speed. Clustering is
a direct consequence of swimming but is mediated by the presence of the flow: no clustering without a flow (for v = 0
Egs. (1) and (2) decouple and cells become tracers advected by an incompressible velocity). In the opposite limit of slow
orientation, when S > 1, random tumbling due to fluid vorticity dominates and the swimming orientation cannot align to
the local acceleration ((@ - p) — 0, Fig 1c): compressibility is lost and particles distribute uniformly.

To quantify clustering we measured the correlation dimension Ds, ruling the small-distance (r — 0) behavior of the
probability to find two swimmers at separation less than r: pa(r) = P[|X; — Xa| < r] o rP2 [8]. For uniform
distributions D> = d. When clustering is present probability p, increases because Dy < d (see [3] for a similar study
with inertial particles). In Fig. 2a we show Dy as a function of S: for & <« 1, D5 approaches values close to 1,
indicating strong clustering in almost filamentary structures (the vortex filaments); conversely, when S > 1, the correlation
dimension approaches the uniform-distribution value D> ~ 3. Finally, studying the probability p,(r) that g-particles
reside at distance less than r we measured the generalized dimensions, D, (Py(r) ~ rla=1)Dq [8]), shown in Fig. 2b. We
found that D, monotonically decreases, meaning multifractal distributions, which explains the strong inhomogeneities of
Fig. 1a. In real situations clustering properties strongly depends on the relative intensity between fluid and gravitational
acceleration, when the latter dominates the characteristics of clustering are very different [6].
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Figure 2. (a) Correlation dimension Dz vs of the stability parameter S = vowrms/arms. (b) Generalized dimensions of order g for
data corresponding to the circled points in panel (a), i.e. the same of Fig. 1a
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