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RESTORING ISOTROPIC UNIVERSALITY IN FREELY DECAYING ROTATING TURBULENCE
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Abstract We analyse the anisotropy of homogeneous turbulence in a rotating frame. The Zeman scale kΩ (Zeman, 1994) was
introduced to quantify the effect of non-linearity compared to the Coriolis effect, and quantify anisotropy at different scales: at large
scales k � kΩ the anisotropy created by rotation is dominant, whereas at small scales kΩ � k, universal 3D isotropic characteristics
of turbulence appear to be restored. We investigate the corresponding phenomenon using Direct Numerical Simulations (DNS) in freely
decaying turbulence, varying the rotation rate. We confirm the return to isotropy of the small scales by analyzing the angular power
spectrum, the energy transfer and poloidal/toroidal energy modes. The universality is restored at small scales, but for the larger rotation
rate case.

CONTEXT

In astrophysical, geophysical and engineering flows, turbulence can be strongly affected by solid-body rotation. In con-
trast with isotropic turbulence, some anisotropic structuration emerges in rotating turbulence. These structures are elon-
gated along the rotation axis, and consist of both vortices and jets, characterized as “2D-3C" — two-dimensional, three-
component —. Two-dimensional trend means a reduction of axial variability, but generally not reduced to pure Taylor
columns. This complex anisotropy requires a refined statistical description, with two-component spectra (see results here)
or two-component structure functions [3]. The question is whether this anisotropy, characteristic of rotating turbulence,
is present at all scales? To answer this question and provide a measure of the anisotropisation phenomenon, Zeman [1]
introduced a wavenumber cut-off scale kΩ defined as

kΩ =
(
Ω3/ε

)1/2
(1)

with Ω the rotation rate and ε the energy dissipation rate. This number kΩ, analogous to the Ozmidov scale in stratified
flows, is called the Zeman scale; it quantifies the effect of non-linearity compared to the anisotropic effect of rotation
relative to different scales: at large scales k � kΩ the anisotropy is dominant whereas at small scales kΩ � k the
universal 3D isotropic characteristic is restored.
One recent DNS [2] seems to confirm this description. However, in these simulations, only a short Coriolis subrange
appears and only one value is given to the rotation rate. Moreover, these are forced simulations, with a forcing term which
is anisotropic at large scales so it is in competition with the natural rotation anisotropy of large scales. From data obtained
in a very nice recent experiment by [3], in which a measure of the complete anisotropic energy transfers is done, the
estimation of kΩ also permits to say that, to this day, experimental PIV techniques cannot reach a high enough resolution
to capture the Zeman scale.
Therefore, in order to clarify the small-scale isotropisation phenomenon, we present some results of DNS with six different
rotation rates, considering the case of freely decaying rotating turbulence.

RESULTS

Classically, to measure the energy by scale — or for each wave number in Fourier space —, one uses averages of energy
over spheres of radius k, and thus averages out the anisotropic contents of the energy distribution. In the case of rotating
turbulence with axisymetric statistics about the rotating vertical axis, the distribution of energy is not equi-distributed over
the spherical shell of radius k by contrast to isotropic turbulence. We characterise this non equi-distribution of kinetic
energy by introducing the angular dependence of the power spectrum ([4] and references therein). In the case of discrete
analysis in DNS, we decompose the sphere into several rings Oi (six rings in our simulation as shown on the sketch of
figure 1):
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k
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where ûk is the Fourier velocity vector, and mi
k = π

2
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(sin(θi)−sin(θi+1) is a normalization term.
We have performed simulations at six rotation rates, thus at different Rossby numbers ranging from about 0.03 to 0.3, at
two differents resolutions: 10243 and 20483 points. For example, on figure 1 we plot the power spectrum for four rotation
rates and the Zeman scale kΩ in DNS with 1024 points.
We show that at high Rossby number (low rotation rate), on figure 1(a), all scales have a universal 3D isotropic charac-
teristic (every angular spectrum power E(k,Oi) collapse) and, since the Zeman scale kΩ is larger than all the turbulent



vortices in the flow, rotation has no effect. Nevertheless, at lower Rosby number (higher rotation rate), on figures 1(b) and
(c), the large scales exhibit an anisotropy in which energy concentrates on the equatorial ring O8 down to the Zeman scale
k ≤ kΩ. Below this Zeman scale, ie. k ≥ kΩ, the scales characteristics recover a universal isotropic distribution (every
angular spectrum power collapse again). Finally, at very high rotation rate, on figure 1(d) (very low Rosby number), every
scale presents anistropic characteristics.
In our presentation, we will discuss more precisely this phenomen, in particular with DNS results at high resolution 20483.
We will show that the non linear energy transfer is subjected to the same phenomenon. Moreover, by decomposing the
Fourier velocity vector in a poloidal part (aligned to the rotation axis) and a toroidal part (perpendicular to the rotation
axis) [4], the componements of velocity in the inertial range follow the scenario of “2D-3C” — two dominant directions of
variability but still retaining three-components velocity — at low Rosby number at small scales and universal 3D isotropic
characteristic at high Rosby number for every scale.

Figure 1. Angular power spectrum for different Rossby numbers (different rotating rates) and sketch of the angular decomposition by
six spectral rings.
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