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Abstract The dynamics and structure of rotating homogeneous turbulence is investigated through the statistical properties of the
“perceived” velocity gradient tensor, defined by interpolation from the locations and velocities of a set of four particles. Results from
direct numerical simulations of forced homogeneous rotating turbulence at different Rossby numbers are presented. We thus provide a
multi-scale analysis of the dynamics of rotating turbulence, and of some of its important features.

DEFINITIONS

We analyze here the statistics of the velocity gradient tensor M perceived by a set of four points and defined as:

Mab =
[
ρ−1

]
ai
vib −

δab
3
Tr(ρ−1 · v), (1)

where ρ (resp. v) is the so-called reduced coordinates tensor (resp. reduced velocity tensor) [2]. These statistics are
measured in direct numerical simulations of forced homogeneous rotating turbulence at different Rossby numbers, for
isotropic tetrads (ρab = (r0/

√
3)δab) of different sizes (between the Kolmogorov and the integral length scales, i.e.

η . r0 . L).
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Figure 1. Joint PDF of the normalized R and Q invariants: R∗ = R/〈(Tr(S2))3/2〉, Q∗ = Q/〈Tr(S2)〉. (a) Isotropic turbulence,
r0 ≈ L/3; (b) isotropic turbulence, r0 ≈ L/170 ≈ η; (c) Ro(L) = 0.07, r0 ≈ L/2; (d) Ro(L) = 0.07, r0 ≈ L/73 ≈ 1.5η.
The isoprobability contours represent the probabilities 10n, where n is a negative integer (see colorbars). The dashed line is the
zero-discriminant line: 27R2 + 4Q3 = 0.



JOINT PROBABILITY DISTRIBUTION FUNCTIONS OF THE Q AND R INVARIANTS

A convenient representation of the local topology of an incompressible flow is the (R,Q) plane. The three eigenvalues
of the 3 × 3 matrix M are indeed fully determined by the invariants Q = −Tr(M2)/2, R = −Tr(M3)/3 [1]. More
specifically, ifD = 27R2+4Q3 > 0 (the region above the zero discriminant line on Fig. 1), then two of these eigenvalues
are complex conjugates, which means that the flow is locally elliptic, with locally swirling streamlines. ForD < 0 (below
this separatrix), the three eigenvalues of M are real: strain dominates and the flow is locally hyperbolic. Incompressibility
imposes Tr(M) = 0. For R < 0, two eigenvalues (or their common real part) are negative and the third one is positive,
therefore the flow will be contracting in two directions (“filament-type” topology), whereas for R > 0 two eigenvalues
(or their real part) are positive, resulting in a “sheet-like” topology of the flow.

The joint probability distribution functions (PDF) of these invariants are shown in Fig. 1, for tetrads of small and large
scales, in isotropic and in rotating turbulence. In agreement with the litterature [2, 4], in the isotropic case this PDF is
almost symmetric with respect to the R = 0 axis at large scale (Fig. 1(a)) and, for r0 ≈ η, the well-known “tear-drop
shape”, with an excess of probability along the R > 0 side of the zero-discriminant line is recovered (Fig. 1(b)). In the
rotating flow (at Rossby number Ro(L) = urms/(2LΩ) = 0.07, where urms is the rms of the velocity fluctuations, L
the integral scale, and Ω the rotation rate), the PDFs are more symmetric with respect to the R = 0 axis (Fig. 1(c) and
(d)), i.e. closer to a Gaussian distribution [2]. In particular, we found that, in rotating turbulence, the joint PDF of R and
Q at scales larger than the Zeman scale `Z = ε1/2/(2Ω)3/2 (ε is the energy dissipation rate) are much more symmetric
than their counterparts in isotropic turbulence, whereas these quantities at scales smaller than `Z are qualititatively very
similar to the isotropic ones [3]. For Ro(L) = 0.07, all the scales are > `Z and are thus affected significantly by rotation.
This is confirmed by the measurement of the skewness of R, plotted in Fig. 2 as a function of r0 in both flows.
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Figure 2. Skewness of R as a function of the tetrad scale r0, in the isotropic and rotating cases.

SECOND- AND THIRD-ORDER MOMENTS OF M

We will also present scaling laws for second- and third-order moments of the perceived velocity gradient tensor [3]. The
distribution of the enstrophy and strain variance, and of their production terms, will be related to the topology of the flow,
thanks to conditional probability density functions. These quantities demonstrate the role played by the Zeman scale in
the elementary processes of rotating turbulence, when compared to the scale at which the perceived velocity gradient
tensor is measured.
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