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LINEAR DYNAMICS OF A BOUNDARY LAYER FLOW OVER A CYLINDRICAL RUGOSITY
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Abstract Over the past years, cylindrical roughnesses immerged within a boundary layer flow have been used as a possible way to
delay transition to turbulence. However, for some particular setups, transition can actually occur right downstream the rugosity. The
purpose of the present work is to investigate the transition induced by symmetric and anti-symmetric mechanisms by means of direct
numerical simulations, global linear stability analysis and eventually linear optimal perturbation.

INTRODUCTION

Delaying transition in boundary layer flow has been a long time challenge. It has been known for a while that transition to
turbulence in such a flow can be caused by Tolmien-Schlichting (TS) waves. Franssonet al [3] have shown theoretically
that these TS waves can be stabilized by streaks as long as thelatter have an amplitude less than 26% of the external veloc-
ity. In the experimental part of their work, they have created those streaks using a periodic array of cylindrical rugosities.
Unfortunately, for some sets of parameters, the flow actually undergoes transition right downstream the rugosities. The
mechanism responsible for this transition is not yet known.However, a few hypothesis can be made when drawing a
parallel with the jet in cross-flow linear stability analysis performed by Ilaket al [4]: transition can either be caused by
symmetric perturbations closely linked to hairpin vortices, or by anti-symmetric perturbations similar to the one existing
in a 2D cylinder flow. In the present work, the base flow will first be presented. Then the linear stability analysis will
mainly focuses on symmetric perturbations, before discussing the results and giving the prospects for the work to be done
in the nearby future.

BASE FLOW

The base stateQ = (U, P )T is a solution to the time-independant incompressible Navier-Stokes equations:
{

(U · ∇)U = −∇P + Re−1∇2U

∇ · U = 0
(1)

where the Reynolds numberRe is defined asRe = Uh/ν, h being the height of the cylindrical rugosity andν the
viscosity. Two furthermore parameters come into play to fully characterize the base flow: the aspect ratioη = d/h,
whered is the diameter of the rugosity and the boundary layer thicknessδ99. All the calculations are performed using the
direct numerical simulation spectral elements code Nek 5000 [5]. A symmetry plane is used to kill any anti-symmetric
perturbation and to reduce the computational cost. Along with it, a low pass-by filter, as prescribed by Akerviket al [1] is
used whenever the base flow is unstable with respect to symmetrical perturbations.
The base flow computed for the following set of parameters:(Re, h, η, δ99) = (1200, 1, 1, 2) is presented on figure .
Figure (a) shows the major features of this base flow: the upstream and downstream recirculation bubbles depicted as the
zero streamwise velocity surface (blue) and the upstream vortex system. This system is formed of four vortices among
which the most interesting one is the horseshoe vortex (labeled 1 in figure (b). Note furthermore that the upstream and
downstream recirculation bubbles are found to be a lot less sensitive to the Reynolds number than in 2D cases: only a
15% increase of the recirculation length is observed when the Reynold number increases from800 up to1200.
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LINEAR STABILITY ANALYSIS

Perturbationsq = (u, p)T to the base flow computed previously are governed by the following linearized Navier-Stokes
equations:

{

∂tu + (u · ∇)U + (U · ∇)u = −∇p + Re−1∇2u

∇ · u = 0
(2)

This set of equations can be recasted into a classical dynamical system formB∂tq = Lq, whereL is the jacobian matrix
of the Navier-Stokes equations. This matrix being far too large to be explicitly calculated, direct eigenvalue computation
is forbidden. In order to obtain however the eigenspectrum and associated global modes, a time-stepping procedure linked
with an Arnoldi algorithm is used.

Symmetric perturbations
As a first step toward comprehension, only the stability to symmetric perturbations is investigated. According to these
results, for the considered set of parameters, the base flow is unstable toward such perturbations. Figure shows the spatial
structure of the leading unstable global mode’s real part streamwise component. Looking at the eigenspectrum, one can
see that these cheron shaped modes belong to a branch in the eigenspectrum. One could expect that these modes would
behave as in the scenario depicted in the 2D analysis by Erhenstein and Gallaire, where the modes of the branch interact
to give rise to a low-frequency unsteadiness .However a preliminary DNS and according to [4], the shedding frequency of
hairpin vortices seems to be linked only the leading eigenmode.
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CONCLUSION AND PROSPECTS

The stability to symmetric perturbations of the flow over a cylindrical rugosity has been investigated. The symmetric
eigenmodes resulting from this linear stability analysis are characterized by their chevron shape all located on a branch in
the eigenspectrum of the linearized Navier-Stokes operator . Preliminary results regarding the stability to anti-symmetric
perturbations tend however to give another possible scenario where an anti-symmetric global mode, similar to the one
observed in a 2D cylinder flow, are responsible for transition. The first scenario is however somewhat more relevant
with the experimental observations by Von Doenhoff and Braslow [6] where a periodic shedding of hairpin vortices
right downstream the rugosity is observed. In the nearby future, influence of the parameters on the competition between
symmetric and anti-symmetric global modes will be investigated along with the transient growth very likely to take place
in such an open shear 3D flow.

References

[1] Akervik E., Brandt L., Henningson D.S., Hœpffner J., Marxen O. and Schlatter P.: Steady solution of the Navier-Stokes equations by selective
frequency damping.Physics of Fluids18, 2006.

[2] Bagheri S., Akervik E., Brandt L. and Henningson D.S.: Matrix-free methods for the stability and control of boundary layers.AIAA Journal47
n

o 5, 2009
[3] Fransson J.H.M, Brandt L., Talamelli A. and Cossu C.: Experimental and theoritical investigation of the nonmodal growth of steady streaks in a

flat plate boundary layer.Physics of Fluids16, 2004
[4] Ilak M., Schlatter P., Bagheri S. and Henningson D.S: Bifurcation and stability analysis of a jet in cross flow. Part 1:onset of global instability at

low velocity ratio.J. Fluid Mech.(Accepted), 2011
[5] Fischer P.F., Lottes J.W. and Kerkemeier S.G.: Spectral h/p elements code Nek 5000. Web sitehttp://nek5000.mcs.anl.gov/, 2011
[6] von Doenhoff A.E. and Braslow A.L.: The effect of distributed surface roughness on laminar flow and flow control, volume 2. Pergamon Press,

Lachmann edition, 1961


