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Abstract Particle- or droplet-laden turbulent flows play a role in many industrial and environmental applications like spray combustion
or cloud formation. For numerical simulations of such flows, RANS-based simulation models are applicable. In this work [7], we
outline a new model that accurately reproduces particle-induced attenuation of fluid-phase turbulence. The new model is based on a
Lagrangian description for the particle-phase, which provides a closure model for particle-phase terms in the fluid-phase RANS and
Reynolds stress equations. Moreover, it accounts for preferential concentration effects that become important for Stokes numbers
around 1. The model performance is validated for a range of different particle Stokes numbers and particle mass loadings.

INTRODUCTION

For particle volume loadings Φv = 10−5 . . . 10−2, the particle-phase has an effect on the fluid-phase turbulence but
particles do not interact with each other. An important turbulence modulation effect is turbulence attenuation caused
by particles with densities ρp that are higher than the fluid density ρ. Eaton [4] has reviewed several experimental and
numerical studies where this effect was investigated. For example, Boivin and coworkers [2] have conducted a detailed
numerical study, where turbulence attenuation was analyzed for particle mass loadings Φm = 0 . . . 1 and Stokes numbers
St ≡ τp/τη = 1 . . . 10. Turbulence attenuation processes are significantly influenced by zones of preferential particle
concentrations that are forming for heavy particles with St ≈ 1 accumulating in regions of low vorticity [3].
In this work, we propose an elegant Lagrangian particle-phase model that accounts for preferential concentration effects
and accurately reproduces fluid-phase turbulence attenuation as observed by Boivin et al. for the entire mass loading and
Stokes number ranges considered.

MODEL FORMULATION

The equations of motion of a particle with index n, position xn(t), velocity vn(t), and mass mp in a flow field u(x, t) are
given by
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[1, p.123]. In a RANS context, the instantaneous fluid-phase flow field u(x, t) at position x and time t is unknown, but
the mean 〈u〉 and the Reynolds stress tensor U with elements 〈u′iu′j〉 are calculated with the RANS and Reynolds stress
transport equations.
We model the instantaneous fluid-phase velocity at the location of particle n, i.e. u(xp, t) referred to as seen fluid velocity,
by statistically independent random diffusion processes

dξni = − dt

T ∗L
ξni +

√
2

T ∗L
dWi (2)

for each spatial direction i with correlation timescale T ∗L and Wiener process increment dWi. To ensure consistency of
the modeled seen velocity statistics with 〈u〉 and U from the RANS solution, we introduce the transformation

u = 〈u〉+ Vw′n with components w′ni =
√
〈w′ 2i 〉ξ

n
(i) and W =

 〈w′ 21 〉 0 0
0 〈w′ 22 〉 0
0 0 〈w′ 23 〉

 , (3)

which is based on the diagonalization VTUV = W of the Reynolds stress tensor U. As is sketched in Figure 1(c) for a
two-dimensional case, the mean velocity 〈u〉 and the Reynolds stress tensor U vary spatially. Accordingly, as a particle n
travels through the computational domain with ξ(t)n evolving as given by equation (2), it visits different RANS solution
grid cells with changing transformations V and diagonal Reynolds stress tensors W.
The modeling of the correlation time scale T ∗L in equation (2) depends on the Stokes number. For St→ 0, particles behave
like fluid particles and T ∗L becomes equal to the Lagrangian velocity correlation time scale of fluid particles. For ballistic
particles with St → ∞, the Eulerian correlation length scales of the flow field become relevant. At intermediate Stokes
numbers, He, Jung et al. [5, 6] have shown that preferential concentration effects have a significant influence on T ∗L. In
this work, this effect is taken into account through an extended empirical expression for T ∗L(St) based on [5, 6].
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Figure 1. Attenuation of turbulent kinetic energy k as predicted by (a) the DNS’ [2] and (b) the model for different mass loadings Φm

and particle diameters, (solid) τp = 0.069s; (dashed) τp = 0.251s; (dotted) τp = 0.698s. To enforce consistency of the seen velocity
statistics, the Reynolds stress diagonalization depicted in (c) is applied as a particle travels through the computational grid of the RANS
solution. In panel (d), model predictions are provided, where preferential concentration effects were neglected in the model for T ∗

L.

By evolving an ensemble of particles with equations (1) and (2), the drag forces Fn of different particles can be evaluated
in each RANS solution grid cell and the particle-phase terms in the fluid-phase RANS and Reynolds stress equations can
be calculated. Unlike the model of Minier et al. [8], our new model enforces consistency of seen and fluid-phase velocity
statistics and accounts for preferential concentration effects that are important for particles with St ≈ 1 as is shown next.

RESULTS

To verify the new particle-phase model, we compare model predictions with the detailed direct numerical simulation
(DNS) study of Boivin et al. [2]. In their DNS’, particles with different response times τp were suspended in forced
homogeneous isotropic turbulence at different mass loadings Φm. The DNS attenuation results of the turbulent kinetic
energy k compared to the particle-free case with kinetic energy k0 are provided in Figure 1(a). The results from the model
depicted in Figure 1(b) are in very good agreement with the DNS results for all particle types and loadings. In the model
calculations plotted in Figure 1(d), preferential concentration effects are ignored in T ∗L(St), which leads especially for
particles with small τp and St ≈ 1 . . . 5 to an over prediction of turbulence attenuation.
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