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Abstract The analysis of turbulence in transient flows has applications across a broad range of fields. The flow of fluid in a toroidal
container is a paradigm for studying the complex dynamics due to the turbulence in these transient flows. We consider both the ‘spin-up’
problem, in which the toroidal container is spun up from rest to a constant angular frequency, and the ‘spin-down problem’, in which
the system is already in a state of rigid-body rotation and is spun down linearly to rest. These two approaches allow us to examine the
development of an impulsively generated axisymmetric boundary-layer, adjacent to the interior annular wall, its subsequent instability
and the larger scale transient features within this class of flows.

FORMULATION

We consider an annulus of square cross-section with a centreline radius L and cross-sectional radii a and b, in the r̂- and
ẑ-directions respectively, filled with an incompressible viscous fluid of kinematic viscosity ν, as shown in Figure 1. In
the ‘spin-up’ problem, the fluid and annulus are initially at rest, that is, the initial angular frequency, Ωi, is zero. At time
t = 0, an unsteady flow is generated by an impulsive change in the rotation rate of the annulus to an angular frequency
Ωf .

Figure 1: A cross-section of the annulus, with dimensional centreline radius L and cross-sectional radii a and b, in the r-
and z-directions respectively. The outer wall of the annulus is at r̂ = L + a, whilst the inner wall is at r̂ = L − a. The
upper wall of the annulus is at ẑ = b, with the lower wall is at ẑ = −b.

For the initial boundary-layer analysis, it is most convenient to work in a cylindrical coordinates system, in which we
have chosen 2a as the typical length scale, 2aΩf as the typical velocity scale, Ω−1

f as the time scale, with pressure non-
dimensionalised on the inertial scale, 4a2Ω2

fρ. The dimensionless velocity components corresponding to the coordinates
(r, φ, z) are labelled (u,w, v) and, for the spin-up problem, the system is initially in a state of rest:

u ≡ v ≡ w ≡ 0 at t = 0. (1)

The boundary conditions for t > 0 are that the annulus rotates at the new frequency:
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where ts is the time taken for the annulus to spin-up to its final angular frequency Ωf , δ = a/L is a curvature parameter,
and α = b/a is the aspect ratio of the annular cross-section.
This investigation is based on the experimental work of Madden and Mullin [1], and the subsequent work by Hewitt et
al. [3], which used a toroidal pipe of radius a = 16 mm and centreline radius of curvature L = 125mm, which gives a
curvature parameter, δ = a/L = 0.128. We shall use this value in all curvature-dependent computations presented.



ROTATIONALLY SYMMETRIC NAVIER-STOKES COMPUTATIONS

The rotationally symmetric Navier-Stokes equations are solved numerically. We exploit the numerical capabilities of
Semtex [2], a quadrilateral spectral element DNS code, ideal for solving problems in cylindrical coordinates systems.
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Figure 2: Contour plots of the azimuthal velocity component w in the case of a toroidal container spun up from rest. Show
are three time snaps taken at (a) t = 2, (b) t = 4 and (c) t = 6 for a flow with a Reynolds number Re = 2000.

The resulting complex dynamics can be seen in the contour plots presented in figure 2. At time t = 2, the time at
which the container has reached its final (constant) angular frequency, we observe the initial boundary layer development
(Stewartson layers on the inner and outer wall, and Ekman layers on the upper and lower boundaries), together with the
signature of a boundary-layer eruption (an unsteady separation) within the inner Stewartson layer. At a later time, t = 4,
the inner Stewartson layer has developed an instability akin to a Görtler instability (as described by Otto [4]). This vortex
instability then serves to shed vorticity into the Ekman layers at the upper and lower boundaries which manifests as a
nonlinear travelling wave within the Ekman layers. These travelling waves subsequently collide with the Stewartson layer
on the inner boundary; at this time in our simulations the Stewartson layer has itself broken down, exhibiting the type of
boundary-layer separation described by Hewitt et al. [3]. At even later times, t = 6 in figure 2, the flow has developed
a secondary asymmetric instability at the inner wall, an instability that has all the hall marks of the secondary instability
that develops upon fully nonlinear Görtler vortices [5].

We will describe the boundary-layer development, including the initial ejection and subsequent instability, as well as
travelling waves in the Ekman layers which arise at the upper and lower boundaries of the container and the vortex
shedding which occurs in the Stewartson layers for higher Reynolds numbers. We will also elucidate the ‘oscillatory
front’ that moves across the cross-section ultimately leading to rigid-body rotation. The differences between the case of
spin-up and spin-down will be highlighted.
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