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Abstract Results are presented for tetrad dispersion in homogeneous isotropic turbulence by means of a simple Lagrangian stochastic
model (LSM) and a separation-dependent eddy diffusivity model (which is essentially an extension of Richardson’s model for particle
pair dispersion to tetrads). The latter may be considered as a limiting case of the LSM and is referred to here as the Richardson model.
It will be shown that the tetrads’ shape statistics computed from a direct numerical simulation of turbulence agree very well with
equivalent results from both the LSM and the Richardson model. It will also be shown that the degree of elongation of the tetrad in
the inertial subrange of a turbulent-like flow is controlled by the exponent, m, in an eddy diffusivity of the form K(r) ∝ rm where r

is the interparticle separation, becoming more elongated as m increases in the range 0 6 m < 2. The relationship between the shape
statistics and the growth rates of the the mean square separation, the mean square area and the mean square volume of the tetrads is
discussed.

INTRODUCTION

The dispersion of groups of correlated particles in turbulent flows is of much interest, both because of its relationship
with higher order moments of the concentration field and because it allows connections to be made between the statistical
and structural descriptions of turbulence. Information on the geometry of a 3-D flow can be obtained by following four
particles, a tetrad. In recent years experimental techniques [1] and numerical simulations [2, 3, 4] of tetrads have provided
much insight into the nature of turbulence. Here, a simple Lagrangian stochastic model (LSM) for tetrads is compared
with a direct numerical simulation (DNS) of turbulence. The model is an extension of Thomson’s model [5] for particle
pairs. It is constructed to satisfy the well-mixed condition and has as an input the constant of proportionality in the
second-order Lagrangian velocity structure function, C0. By varying C0, it is possible to make the particles’ motion
more (large C0) or less (small C0) diffusive than in real turbulence and thereby assess the relative importance of ballistic
versus diffusive motion in real turbulent flows. Furthermore, results will also be presented for a diffusion equation with
a separation-dependent eddy diffusivity: K(r) ∝ r4/3 where r is the separation between any two particles. This is the
limiting case of the LSM for C0 � 1 and is an extension of Richardson’s model [6] for particle pairs to tetrads. This
model will henceforth be referred to as the Richardson model.

RESULTS

It is convenient to introduce a reduced set of coordinates that eliminates the centre of mass and is orthogonal. Such a
coordinate system is given by e.g. [2]

ρ1 =
x2 − x1√

2
, ρ2 =

2x3 − x2 − x1√
6

, ρ2 =
3x4 − x3 − x2 − x1√

12
(1)

where xα (α = 1, . . . , 4) is the position vector of each particle. The ρ-vectors can be embodied in the square matrix P
whose columns are the three vectors ρα (α = 1, 2, 3) and whose rows are the spatial coordinates. A moment of inertia-like
tensor can be defined by I = PP T whose eigenvalues are given by λi (i = 1, 2, 3). The eigenvalues can be used to
describe the shape and size of the tetrahedron. The squared volume, mean square area (over the four sides) and mean
square separation (over the six sidelengths) of the tetrahedron are related to the three invariants of I . The shape of the
tetrahedron may be characterised in terms of Ii = gi/

∑
i gi. Ordering the eigenvalues so that g1 > g2 > g3, an elongated

tetrahedron has I1 � I2, I3 and a flattened tetrahedron has I1, I2 � I3.
Figure 1 shows the joint pdf of (I1, I2) for the DNS, LSM, Richardson model and for tetrads formed from four uncorre-
lated particles. The DNS data is taken from [3] for which C0 ≈ 5.2 and the Taylor-scale Reynolds number Rλ ≈ 284; the
LSM is evaluated with C0 = 5. Both the LSM and Richardson model agree very well with the DNS which all show that,
in the inertial subrange, tetrads tend to form more elongated shapes than is the case for tetrads formed from independently
moving particles [3]. Since intermittency effects are absent in the LSM and Richardson model, these results suggest that
intermittency effects are not important in determining the shape statistics of the tetrads in the inertial subrange, at least at
the value of Rλ that is considered here. Furthermore, the good agreement between the DNS and the Richardson model
indicates that a preference for elongated tetrads in the inertial subrange is a property of any flow in which the disper-
sion is well approximated by a diffusivity of the form K(r) ∝ r4/3. Indeed, the ‘degree of elongation’ in a generalised
Richardson model in which K(r) ∝ rm increases with m in the range 0 < m 6 2 [7].
The good agreement between the LSM and the Richardson model suggests that the shape statistics do not change signif-
icantly with C0. In contrast, 〈r2〉 = gεt3, 〈A2〉 = gAε

2t6 and 〈V 2〉 = gV ε
3t9, where ε is the mean dissipation rate, 〈·〉
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Figure 1. Joint pdf of (I1, I2) for a time typical of the inertial subrange: (a) LSM; (b) DNS; (c) Richardson model; (d) independent
particles. The contours are logarithmically spaced. The triangle of admissible values of I1, I2 and I3 is also shown. The sides of this
triangle are the limiting shapes for a tetrahedron: I1 + 2I2 = 1 (equivalently I2 = I3), I1 + I2 = 1 (equivalently I3 = 0) and I1 = I2

(equivalently 2I2 + I3 = 1) [4].

indicates an ensemble average and g, gA and gV are constants, all vary with C0 in the LSM. From order of magnitude
considerations it is expected that gA ∼ g2, gV ∼ g3, gV ∼ g

3/2
A . For one tetrad, the ratios g1/2

A /g and g1/3
V /g are

determined by Ii and vice-versa but for an ensemble of tetrads this is no longer true. However, it is plausible that g1/2
A /g

and g1/3
V /g are closely related to 〈Ii〉. If this is the case, then since 〈Ii〉 is independent of C0 it is likely that g1/2

A /g and
g
1/3
V /g are also independent of C0. This is indeed the case: on average, g1/2

A /g ≈ 0.265 and g1/3
V /g ≈ 0.09 over a wide

range of C0 values with little deviation from these values. By analysis of exit-time statistics, the same quantities can be
evaluated from the DNS data: g1/2

A /g ≈ 0.42 and g1/3
V /g ≈ 0.16 which are similar in magnitude to the values calculated

from the LSM.
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