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Abstract We investigate the scaling of the Nusselt and Péclet number as well as that of energy spectrum using direct numerical
simulation for very large and∞ Prandtl numbers. Simulations have been performed in a box for the Rayleigh numbers in the range
104 − 108 and for the Prandtl numbers 102, 103, and∞. Nusselt number increases with the Rayleigh number as Nu ∼ Raγ with γ
in the range 0.29 − 0.33. Péclet number scales as Pe ∼ Raζ with ζ in the range 0.57 − 0.61. The observed results are in general
agreement with earlier results. The energy spectrum for Pr =∞ neither follow the Kolmogorov-Obukhov nor the Bolgiano-Obukhov
scaling.

INTRODUCTION

Rayleigh-Bénard convection (RBC) is of tremendous importance in many natural phenomena, e.g., mantle convection,
atmospheric circulation, and stellar convection, etc. In RBC, a fluid is placed between two horizontal conducting plates
with the lower plate hotter than the upper one. Rayleigh number Ra, a measure of buoyancy force in the system, is defined
as Ra = αg∆d3/νκ, where g is gravitational acceleration, ∆ and d are the temperature difference and the distance between
horizontal plates, respectively, and α, ν, and κ are thermal expansion coefficient, the kinematic viscosity, and the thermal
diffusivity of the fluid, respectively. Prandtl number Pr is defined as ν/κ. We solve the Navier-Stokes equation along
with the temperature equation, numerically in a box of aspect ratio 2

√
2 using pseudospectral code developed by Verma

et al. [6]. Free-slip boundary condition for the velocity and conducting boundary condition for the temperature field is
used for the top and bottom walls. For the vertical walls, however, periodic boundary condition is utilized for both the
fields. We conducted numerical experiments for the Prandtl numbers 102, 103, and∞ and Rayleigh numbers in the range
104−108. RK4 method has been utilized for time advancement. Further details of numerical simulations can be obtained
in Mishra and Verma [4]. We also performed numerical simulations in a no-slip box for Pr = 102 using NEK5000 for
comparison.
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Figure 1. (a)Variation of Normalized Nusselt number (Nu/Ra1/3) with the Rayleigh number. Our data appears to scale well with
Nu ∼ Ra1/3 and also in good agreement with the earlier results [5, 7]. (b) Variation of Normalized Péclet number (Pe/Ra3/5) with the
Rayleigh number. Our data appears to scale well as Pe ∼ Ra3/5 and in general agreement with earlier result [5].

We compute Nu and Pe as a function of Ra from our simulation data. Figure 1(a) illustrates normalized Nusselt number
Nu/Ra1/3 as a function of the Rayleigh number. For Pr =∞, we observe Nu = (0.21± 0.03)Ra0.33±0.008. Furthermore,
for Pr = 102 and 103, we observe Nu = (0.34 ± 0.02)Ra0.29±0.003 and Nu = (0.27 ± 0.02)Ra0.31±0.006 respectively.
These results are consistent with the earlier results obtained by Grossmann and Lohse [2] (Nu ∼ 0.17Ra1/3), Silano et
al. [5], and Xia et al. [7].



We compute Péclet number Pe from our simulation data. Figure 1(b) depicts the normalized Péclet number Pe/Ra3/5 as a
function of Rayleigh number. For Pr =∞, we observe Pe = (0.20± 0.02)Ra0.61±0.006. Moreover, for Pr = 102 and 103,
we observe Pe = (0.27 ± 0.08)Ra0.58±0.02 and Pe = (0.21 ± 0.04)Ra0.59±0.01. The scalings are in general agreement
with the earlier results [2, 5]. The values of Nu and Pe observed in our simulation is larger compared to the corresponding
values from Xia et al. [7] and from Silano et al. [5] due to the smaller frictional force on free-slip walls compared to
no-slip walls.

SCALING OF ENERGY SPECTRUM

101 102 103

k

10−9

10−6

10−3

100

104

K
in

et
ic

S
p
ec

tr
u
m

Eu (k)

Eu (k)k13/3

(a)

101 102 103

k

10−10

10−7

10−4

10−1

E
n
tr

op
y

S
p
ec

tr
u
m

Eθ (k)

k−2

(b)

Figure 2. (a) Kinetic spectrum Eu(k) (dashed curve) for Pr = ∞ and Ra = 108. Dotted curve is normalized kinetic spectrum
Eu(k)k13/3. Normalized spectrum appears nearly constant in the inertial range. (b) Entropy spectrum, for Pr = ∞ and Ra = 108,
exhibits dual branches for smaller wave-numbers. Upper branch of the spectrum represents θ̂(0, 0, 2n) Fourier modes, which scales
well with k−2. The lower branch appears nearly constant in the inertial range.

We compute kinetic spectrum Eu(k) and entropy spectrum Eθ(k) for Pr = 102, 103, and ∞. Figure 2(a) shows ki-
netic spectrum Eu(k) for Pr =∞ and Ra = 108. Kinetic spectrum appears to follow neither Bolgiano-Obukhov [3] nor
Kolmogorov-Obukhov [1] scaling for Pr =∞, but Eu(k) ∼ k−13/3. Figure 2(b) depicts entropy spectrum Eθ(k), which
contains two branches at smaller wave numbers. Upper branch represent θ̂(0, 0, 2n) Fourier modes, which follow k−2

powerlaw [4]. The lower branch, however, consists all but θ̂(0, 0, 2n) Fourier modes, which appears to be nearly constant
in the inertial range. We observe similar scaling results for Pr = 102 and 103, both for free-slip and no-slip boundary
conditions.

In this abstract we presented the scaling of Péclet and Nusselt number for large and infinite Prandtl numbers. Our scaling
results are consistent with the earlier results [2, 5, 7]. We observed that kinetic spectrum scales as k−13/3, whereas entropy
spectrum is nearly constant in the inertial range.
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