CHARACTERIZATION OF LARGE SCALE QUANTITIES AND ENERGY SPECTRUM FOR VERY LARGE PRANDTL NUMBERS

Ambrish Pandey and Mahendra K. Verma

Department of Physics, Indian Institute of Technology, Kanpur 208016, India

<u>Abstract</u> We investigate the scaling of the Nusselt and Péclet number as well as that of energy spectrum using direct numerical simulation for very large and ∞ Prandtl numbers. Simulations have been performed in a box for the Rayleigh numbers in the range $10^4 - 10^8$ and for the Prandtl numbers 10^2 , 10^3 , and ∞ . Nusselt number increases with the Rayleigh number as Nu $\sim \text{Ra}^{\gamma}$ with γ in the range 0.29 - 0.33. Péclet number scales as Pe $\sim \text{Ra}^{\zeta}$ with ζ in the range 0.57 - 0.61. The observed results are in general agreement with earlier results. The energy spectrum for Pr = ∞ neither follow the Kolmogorov-Obukhov nor the Bolgiano-Obukhov scaling.

INTRODUCTION

Rayleigh-Bénard convection (RBC) is of tremendous importance in many natural phenomena, e.g., mantle convection, atmospheric circulation, and stellar convection, etc. In RBC, a fluid is placed between two horizontal conducting plates with the lower plate hotter than the upper one. Rayleigh number Ra, a measure of buoyancy force in the system, is defined as $Ra = \alpha g \Delta d^3 / \nu \kappa$, where g is gravitational acceleration, Δ and d are the temperature difference and the distance between horizontal plates, respectively, and α , ν , and κ are thermal expansion coefficient, the kinematic viscosity, and the thermal diffusivity of the fluid, respectively. Prandtl number Pr is defined as ν/κ . We solve the Navier-Stokes equation along with the temperature equation, numerically in a box of aspect ratio $2\sqrt{2}$ using pseudospectral code developed by Verma *et al.* [6]. Free-slip boundary condition for the velocity and conducting boundary condition is utilized for both the fields. We conducted numerical experiments for the Prandtl numbers 10^2 , 10^3 , and ∞ and Rayleigh numbers in the range $10^4 - 10^8$. RK4 method has been utilized for time advancement. Further details of numerical simulations can be obtained in Mishra and Verma [4]. We also performed numerical simulations in a no-slip box for Pr = 10^2 using NEK5000 for comparison.

SCALING OF NUSSELT AND PÉCLET NUMBER

Figure 1. (a)Variation of Normalized Nusselt number (Nu/Ra^{1/3}) with the Rayleigh number. Our data appears to scale well with Nu ~ Ra^{1/3} and also in good agreement with the earlier results [5, 7]. (b) Variation of Normalized Péclet number (Pe/Ra^{3/5}) with the Rayleigh number. Our data appears to scale well as Pe ~ Ra^{3/5} and in general agreement with earlier result [5].

We compute Nu and Pe as a function of Ra from our simulation data. Figure 1(a) illustrates normalized Nusselt number Nu/Ra^{1/3} as a function of the Rayleigh number. For Pr = ∞ , we observe Nu = (0.21 ± 0.03) Ra^{0.33\pm0.008}. Furthermore, for Pr = 10^2 and 10^3 , we observe Nu = (0.34 ± 0.02) Ra^{0.29\pm0.003} and Nu = (0.27 ± 0.02) Ra^{0.31\pm0.006} respectively. These results are consistent with the earlier results obtained by Grossmann and Lohse [2] (Nu ~ 0.17Ra^{1/3}), Silano *et al.* [5], and Xia *et al.* [7].

We compute Péclet number Pe from our simulation data. Figure 1(b) depicts the normalized Péclet number Pe/Ra^{3/5} as a function of Rayleigh number. For $Pr = \infty$, we observe $Pe = (0.20 \pm 0.02)Ra^{0.61\pm0.006}$. Moreover, for $Pr = 10^2$ and 10^3 , we observe $Pe = (0.27 \pm 0.08)Ra^{0.58\pm0.02}$ and $Pe = (0.21 \pm 0.04)Ra^{0.59\pm0.01}$. The scalings are in general agreement with the earlier results [2, 5]. The values of Nu and Pe observed in our simulation is larger compared to the corresponding values from Xia *et al.* [7] and from Silano *et al.* [5] due to the smaller frictional force on free-slip walls compared to no-slip walls.

SCALING OF ENERGY SPECTRUM

Figure 2. (a) Kinetic spectrum $E^u(k)$ (dashed curve) for $Pr = \infty$ and $Ra = 10^8$. Dotted curve is normalized kinetic spectrum $E^u(k)k^{13/3}$. Normalized spectrum appears nearly constant in the inertial range. (b) Entropy spectrum, for $Pr = \infty$ and $Ra = 10^8$, exhibits dual branches for smaller wave-numbers. Upper branch of the spectrum represents $\hat{\theta}(0, 0, 2n)$ Fourier modes, which scales well with k^{-2} . The lower branch appears nearly constant in the inertial range.

We compute kinetic spectrum $E^u(k)$ and entropy spectrum $E^{\theta}(k)$ for $\Pr = 10^2$, 10^3 , and ∞ . Figure 2(a) shows kinetic spectrum $E^u(k)$ for $\Pr = \infty$ and $\operatorname{Ra} = 10^8$. Kinetic spectrum appears to follow neither Bolgiano-Obukhov [3] nor Kolmogorov-Obukhov [1] scaling for $\Pr = \infty$, but $E^u(k) \sim k^{-13/3}$. Figure 2(b) depicts entropy spectrum $E^{\theta}(k)$, which contains two branches at smaller wave numbers. Upper branch represent $\hat{\theta}(0, 0, 2n)$ Fourier modes, which follow k^{-2} powerlaw [4]. The lower branch, however, consists all but $\hat{\theta}(0, 0, 2n)$ Fourier modes, which appears to be nearly constant in the inertial range. We observe similar scaling results for $\Pr = 10^2$ and 10^3 , both for free-slip and no-slip boundary conditions.

In this abstract we presented the scaling of Péclet and Nusselt number for large and infinite Prandtl numbers. Our scaling results are consistent with the earlier results [2, 5, 7]. We observed that kinetic spectrum scales as $k^{-13/3}$, whereas entropy spectrum is nearly constant in the inertial range.

References

[1] R. Bolgiano. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 64:2226, 1959.

[2] S. Grossmann and D. Lohse. Thermal convection for large prandtl numbers. Phys. Rev. Lett., 86:3316, Jan 2001.

- [3] A. N. Kolmogorov. Local structure of turbulence in incompressible viscous fluid for very large reynolds number, the. Dokl. Akad. Nauk SSSR, 30:9–13, 1941.
- [4] P. K. Mishra and M. K. Verma. Energy spectra and fluxes for rayleigh-bénard convection. Phys. Rev. E, 81:056316, May 2010.
- [5] G. Silano, K. R. Sreenivasan, and R. Verzicco. Numerical simulations of rayleigh-bénard convection for prandtl numbers between 1e-1 and 1e4 and rayleigh numbers between 1e5 and 1e9. J. Fluid Mech., 662:409–446, Nov 2010.
- [6] M. K. Verma, A. G. Chatterjee, K. S. Reddy, S. Paul, R. Yadav, M. Chandra, and R. Samtanay. Benchmarking and scaling studies of a pseudospectral code tarang for turbulence simulations. *Submitted to CPC*, 2012.
- [7] K. Q. Xia, S. Lam, and S. Q. Zhou. Heat-flux measurement in high-prandtl-number turbulent rayleigh-bénard convection. *Phys. Rev. Lett.*, 88:064501, 2002.