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Abstract Magnetorotational (MRI) dynamo action in Keplerian shear flow is a three-dimensional, nonlinear magnetohydrodynamic
mechanism whose study is relevant to dynamo theory and to the understanding of accretion processes in astrophysics. Transition to
this form of dynamo action is subcritical and shares many of the characteristics of subcritical transition to turbulence in hydrodynamic
shear flows. This suggests that both types of flows become active through similar generic bifurcation mechanisms, which in both cases
have eluded detailed understanding so far. We build on recent work on both types of problems to investigate numerically the bifurcation
mechanisms at work in the MRI dynamo problem. The emergence of three-dimensional chaos and transient magnetohydrodynamic
turbulence in this problem is shown to be primarily associated with global homoclinic and heteroclinic bifurcations involving the stable
and unstable manifolds of nonlinear MRI dynamo cycles born out of saddle node bifurcations. The detailed results strongly suggest
that nonlinear MRI dynamo cycles are key actors of the transition in this system. This opens new perspectives to assess the conditions
of excitation of instability-driven dynamos in Nature and in laboratory experiments.

ASTROPHYSICAL AND PHYSICAL CONTEXT

Instability-driven dynamos, i.e. dynamos relying partly on the development of magnetohydrodynamic instabilities such
as the magnetorotational instability (MRI) in Keplerian flow, are very interesting candidates to explain sustained magnetic
activity and turbulence in a variety of differentially rotating astrophysical bodies such as stellar interiors or accretion disks
[1, 5, 16, 2, 11] and could perhaps be observed in dynamo experiments in the near future. Our understanding of the
transition to this form of dynamo action remains very crude though. It is known to require finite amplitude perturbations
and to be essentially non-kinematic, i.e. the excitation of the magnetic field is completely coupled to the excitation of
velocity fluctuations. Recent results on the MRI dynamo [11, 12, 10, 6] strongly suggest that this particular dynamo
transition has much in common with the transition to hydrodynamic turbulence in linearly stable shear flows [3].

MAIN RESULTS

In this communication, we present numerical results that reveal the fascinating complexity of the transition to turbulent
MRI dynamo action in Keplerian shear flow, as studied in the so-called incompressible shearing box framework. The
detailed results are presented in [6, 13]. The first result is that the system first exhibits features typical of a chaotic repeller
such as fractal patterns in maps of turbulence lifetime as the magnetic Reynolds number Rm is increased (Fig. 1).
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Figure 1. Maps of turbulence life-
time as a function of the amplitude
of the initial condition A and Rm for
a given, randomly generated spatial
form of initial condition. The right-
most figure is a high-resolution map
(δRm = 0.2, δA = 0.004) computed
for a restricted parameter range (in-
dicated by the black rectangle) of a
lower resolution map on the left [13].



We then investigate what causes this kind of transition pattern. The dynamics in the transitional regime is found to
be strongly structured around unstable three-dimensional nonlinear MRI dynamo cycles (periodic orbits) which can be
computed with precision using Newton’s method. One such cyclic MRI dynamo state is depicted in Fig. 2. These cycles
are large-scale coherent structures that cannot be described simply in terms of standard mean-field dynamo theory.

Figure 2. Isosurfaces of magnetic field B = 0.9 colored by toroidal field By (in standard dynamo terminology) at various stages of a
MRI dynamo cycle of period T (positive By in red/light gray, negative By in blue-violet/dark gray). The arrows field in the poloidal
plane y = 0 plane traces non-axisymmetric poloidal MRI velocity perturbations [6].

They appear in pairs at saddle-node bifurcations as Rm is increased. The main result of the present work is that these
simple bifurcations are very quickly followed by global heteroclinic and homoclinic bifurcations whose outcome is the
formation of Poincaré tangles [9] involving the stable and unstable manifolds of cycles (Fig. 3). As expected from Smale’s
theorem [15], these bifurcations result in a transition of the whole system to transient chaotic states.
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Rm=339 Figure 3. 2D projection of the unstable mani-
fold of an upper-branch cycle (UB1) born out of a
saddle-node bifurcation at Rm = 327.4, as a func-
tion of Rm. The projection is in the plane of radial
(B0x) vs. toroidal (B0y) axisymmetric field. At
Rm = 339, the manifold has a folded and stretched
geometry typical of a homoclinic tangle [13].

CONCLUSIONS

These results are reminiscent of several studies on the transition to turbulence of hydrodynamic shear flows [14, 8, 17, 7].
They strongly suggest that nonlinear cycles are key actors of the transition in these different systems and, in the present
problem, provide the pathway to large-scale injection of energy into MHD turbulence. This improved understanding of
the role of individual cycles in the global MRI dynamo transition process opens new perspectives to assess the conditions
of excitation of instability-driven dynamos in Nature, such as the much debated dependence of the MRI dynamo on the
magnetic Prandtl number [4], and in laboratory dynamo experiments involving shear flows.
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