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WHICH SCALES ARE MORE ANISOTROPIC IN ROTATING TURBULENCE?
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Abstract Basic scaling arguments suggest that anisotropy in rotating turbulence is more pronounced at large scales. However, some
experiments and simulations have revealed a stronger anisotropy at small scales, close to either the Zeman or the Kolmogorov scale.
Using particle image velocimetry measurements of decaying grid turbulence under rotation, we propose that the relevant Rossby number
which governs the scale of maximum anisotropy should be constructed on the two inviscid invariants of rotating turbulence, energy and
helicity. This new Rossby number allows us to explain the concentration of anisotropy at small scales observed in our experiments.

INTRODUCTION

Turbulence in a frame rotating at a rate Ω is affected by the background rotation if the Rossby number Ro = u′/2ΩL
(where u′ is the typical turbulent velocity and L the integral scale) is of order or lower than 1. In such a situation,
the modification by the Coriolis force of the energy transfers between spatial scales induces a columnar structuring of
turbulence along the rotation axis [1]. A controversial issue is to whether this anisotropy is more pronounced at small or
large scales. In numerical simulation of a wave turbulence model (valid for Ro → 0), Bellet et al. [2] give evidence of a
more pronounced anisotropy at large wavenumber (i.e., small scale). On the other hand, from direct numerical simulation
of forced rotating turbulence with non-zero helicity at finite Rossby number, Mininni et al. [3] recently find a return to
isotropy at small scales.
In order to characterize which scales are primarily affected by the rotation, a scale-dependent Rossby number may be
constructed as Ror = δur/2Ωr, where δur is the characteristic velocity increment over scale r. Using classical Kol-
mogorov scaling (a priori only valid for isotropic turbulence), one has δur ∼ (εr)1/3, where ε is the energy dissipation
rate, showing that Ror is of order 1 for r equal to the so-called Zeman scale [3, 4, 5],

rΩ = ε1/2(2Ω)−3/2 ' LRo3/2. (1)

According to this phenomenology, scales smaller than rΩ should escape from the influence of rotation, and display features
similar to classical non-rotating turbulence. In contrast, a strong influence of the rotation, and in particular a strong
anisotropy, is expected for r � rΩ. Rewriting the “local” Rossby number as Ror = (r/rΩ)−2/3 suggests that anisotropy
should increase with scale, up to the integral scale L, which is questioned by existing data.

RESULTS

Here, we analyze the anisotropy distribution in scale from data of a decaying rotating turbulence experiment. Turbulence
is generated by translating a grid in a water tank mounted on a rotating platform (see Refs. [6, 7] for a description of the
experimental setup). The anisotropic energy distribution and energy transfers are respectively characterized by

E(r, t) = 〈(δu)2〉, Π(r, t) = ∇r · 〈δu (δu)2〉/4, (2)

where δu = u(x + r, t) − u(x, t) is the velocity increment over the vector separation r (which is measured using a
particle image velocimetry system mounted on the rotating frame), ∇r is the divergence in the separation space, and 〈·〉
is the ensemble average over independent realizations of the turbulence decay. For homogeneous (but not necessarily
isotropic) and freely decaying turbulence, these quantities satisfy the Kármán-Howarth-Monin (KHM) relation [7, 8, 9]

∂tR/2 = Π(r, t) + ν∇2R, (3)

where R(r, t) = 〈u(x, t) · u(x + r, t)〉 = 〈u2〉 − E(r, t)/2 is the two-point velocity correlation and ν the kinematic
viscosity. In our experiments, starting from approximately isotropic turbulence right after the grid translation, R(r, t)
becomes anisotropic as time proceeds due to the action of the energy flux Π(r, t) made anisotropic by the rotation [7]. The
anisotropy growth of E and Π is illustrated by the spatio-temporal diagrams in Figs. 1(a,b) which display the horizontal-
to-vertical ratios

aE(r, t) =
E(r, θ = π/2, t)

E(r, θ = 0, t)
and aΠ(r, t) =

Π(r, θ = π/2, t)

Π(r, θ = 0, t)
,

where θ is the angle between the rotation axis and the separation vector r (θ = 0 at the pole, i.e. for r aligned with
Ω, and θ = π/2 at the equator). In the absence of rotation, one has aE = aΠ = 1 for all times t and scales r. In the
rotating case, Figs. 1(a,b) show that the anisotropy first develops at small scales, and propagates towards larger scales as
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Figure 1. (a,b) Spatio-temporal diagrams showing the ratio of the horizontal-to-vertical energy E (a) and energy flux Π (b) in a
decaying turbulence rotating at Ω = 16 rpm. (c) Time evolution of the Zeman scale rΩ and of rν = 4.5η which measures the cutoff
scale between the transfer and viscous terms of the KHM equation (3) (η is the Kolmogorov scale).

time proceeds [7]. This effect is more pronounced on the energy flux Π than on the energy distribution E (the return to
isotropy of E at large time results from the viscous damping term ν∇2R in Eq. (3)).
The stronger anisotropy found at small scale is in apparent contradiction with the basic argument which considers that
the small scales, having faster dynamics, should be less affected by the background rotation. To understand our ob-
servations, one can argue that, in decaying turbulence, because of the fast decay of the instantaneous dissipation rate
ε(t) = − 1

2∂R(0)/∂t, the Zeman scale rΩ(t) rapidly decreases with time, whereas the viscous cutoff of the turbulence
η(t) slowly increases with time (here, the Kolmogorov scale η = (ν3/ε)1/4 is defined as in isotropic turbulence, ignoring
anisotropy). At some point, these two scales must cross each other, and the subrange η � r � rΩ of return to isotropy
identified in Ref. [3] can no longer exist. In order to check this hypothesis, we plot in Fig. 1(c) the time evolution of rΩ(t)
and of the viscous cutoff rν(t) = 4.5η(t), which we find experimentally to be the crossover scale between the inertial
term Π and the viscous term ν∇2R in Eq. (3). We see that these two scales rapidly cross each other, at tVg/M ' 350
(Vg = 1 m s−1 is the grid velocity andM = 4 cm the grid mesh), so that most of the turbulence decay occurs in the regime
where the Zeman scale falls in the dissipative range. Accordingly, the entire inertial range becomes quickly dominated by
rotation in our experiments. Comparing with the results of [3] suggests that the limit scale above which anisotropy can
be found in general is given by raniso ' max{rν , rΩ}. The dimensional argument based on the Zeman scale is therefore
apparently successful to explain why isotropy is recovered in the subrange rν � r � rΩ (when it exists), and why this
“isotropization” cannot be observed in our decaying experiment.
However, according to the Zeman argument, one should still expect maximum anisotropy to occur at the largest available
scales of the flow, where eddies are the slowest, and not at raniso. We therefore propose that an alternative estimate for the
local Rossby number Ror should take into consideration the two invariants of the inviscid equations of motion, energy
e = 〈u2〉/2 and helicity h = 〈u · ω〉. From scaling arguments, each invariant is associated to a cascade with a constant
flux, 〈δu3

r〉 ∼ εr and 〈δu2
rδωr〉 ∼ εhr [10], with δωr the characteristic vorticity at scale r. Building now the characteristic

vorticity at scale r from these conserved fluxes of energy and helicity yields a local Rossby number Ror ' (r/rh)1/3,
with rh = Ω3ε2/ε3h. According to this new scaling, Ror now increases with scale r, indicating that, among the scales
affected by rotation (r > raniso), the larger are the least affected, in agreement with the experiment.
According to these arguments, raniso is not only the lower bound of the anisotropic range: it is also the scale at which the
stronger anisotropy is observed.
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