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Abstract Rotating water structures known as ocean eddies are a crucial component of ocean dynamics. In addition to dominating the 
ocean’s kinetic energy, eddies play a significant role in the transport of water, salt, heat, and nutrients. Eddies influence particular 
processes occurring in the ocean as well as the general ocean circulation. However, the appropriate description of average effects of 
eddy rotation is still often inconsistent and vague. This presentation suggests an approach to the average description of some 
particular oceanographic processes incurred by the eddy rotation in the ocean. 
 
 

BASICS 
 
It is postulated [1] that the state of a turbulent flow is determined besides the field of velocity vector v  also by the field 
of curvature vector / s  k e  (where e / v v , in which v  is the fluctuating constituent of the flow velocity vector, 

v  v , and s  is the length of streamline curve of v ) of the streamline of velocity fluctuation. Following from this 

postulate it is suggested to characterize the average state of a turbulent flow by two state variables, the average velocity 

vector u v  and the gyration vector  v k ,  where the angular brackets denote statistical averaging. The vector 

  is set as a measure of the average intensity and direction of eddy rotation in a turbulent flow and its definition is 

coupled with the definition of the dynamic characteristic of motion 2R    Μ v R v k , where 2/ kR k  

( 1k R k , R  R ) is the curvature radius of the velocity fluctuation streamline. The quantity M  has the sense of 

the average angular momentum of medium particles due to the fluctuating constituent of the flow velocity in respect to 
the random curvature center of the velocity fluctuation streamline. The quantities   and M define the non-vanishing 
“effective moment of inertia” | | / | |J  M . The suggested modification of the setup of the average description of 

turbulent flows also modifies the description of turbulent transport of passive ingredient with concentration C . 
 

VERTICAL DISTRIBUTION OF SUSPENDED SEDIMENTS IN A TIDAL ESTUARY 
The derived equations have been applied to describe the vertical distribution of concentration of the suspended matter 
C  in a river estuary modeled as an open channel with the fixed bottom slope angle   and the time-varying free surface 

angle ( )  t [2]. The model is set up within a right-hand Cartesian coordinate system  , ,x y z , where the coordinate 

axis z  with the origin at the channel bottom is directed upward perpendicular to the bottom and the coordinate x  is 
directed down the bottom slope. Considering , 1   , assuming the quasi-stationary flow regime and the 
concentration small enough to not influence the density  , the derived linear equations for the along-channel velocity 

xu u , the cross-channel component y   and concentration C  read as  
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where Q w C / z   , in which w is the sediment settling velocity, z  is the vertical coordinate directed upward and 

 ,  , , 0k , 1k ,  are constants each of which has a distinct physical sense. So,   is the coefficient of turbulent shear 

viscosity;   is the coefficient of rotational viscosity (coupling the average flow velocity and the medium internal 

rotation characterized by  );   is the coefficient quantifying the energy transfer from the orientated to the non-
orientated turbulence constituent due to the cascading process; 0k  and 1k  are the eddy diffusivities due to the non-

orientated and orientated turbulence constituents;   is the coefficient of diffusion of the angular momentum JΩ. The 
term ( )g    in (1) expresses the summary effect of the along-flow pressure gradient and of the gravity force. The 

determined from (1)−(3) vertical distributions of C  were compared with concentration of the suspended sediments 
observed in the Jiaojiang Estuary (China) [3] for different phases of a spring tide cycle. The comparison showed that the 



derived analytical formula for C  embraces two observed basic types of vertical distribution of concentration, one with 
a monotonic decrease of concentration gradient with distance from the bottom and the other with a gradient maximum 
(lutocline) located at some distance from the bottom.  

 
A MODIFIED EKMAN MODEL ACCOUNTING FOR THE STOKES DRIFT AND STRATIFICATION 

The governing equations for the wind drift current in the Boussinesq approximation can be written as [4] 
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where 0  is the angular velocity of the Earth’s rotation; 1
2 u  is the vorticity; p  is the pressure; J  is the 

“effective moment of inertia”;   is the coefficient of diffusion of the angular momentum M ; 3k  is the proportionality 

coefficient quantifying the moment acting on   due to the stratification and g  g , where g  is the acceleration due 

to gravity. All medium coefficients in (4) and (5), as well as J  are considered constants. Let us note that for 0   

equation (4) reduces to the respective equation of the classical Ekman model while for 0z    and for   

identically equal to the vorticity equation (5) reduces to the equation reflecting the Stokes drift effect. The solution of 
the suggested model depends (in addition to the boundary and stratification conditions) on the characteristic depth of the 
Stokes drift layer, on the Ekman depth scale and on one physical coefficient specified as the coefficient of turbulence 
rotational viscosity. According to the suggested model the additional effects incorporated in the model are: (a) an 
increase of the downwind component of the velocity shear at the surface, (b) a decrease of the angle between the surface 
wind stress and the surface drift velocity, (c) the velocity shear and stresses in the “Stokes layer” are not collinear with 
the wind stress. The model agrees well with observations presented in [5] and [6]. 
 

THE GYRATION ESTIMATED FROM SURFACE DRIFTERS IN THE PACIFIC OCEAN 

It is easy to conclude, that the gyration vector can be expressed also as  n  where 0   is the angle of 

clockwise turn of the unit vector e  along the velocity fluctuation streamline, the overdot denotes the time derivative 
and / k n e k . This expression explains   as the average angular velocity of rotation of the unit vector e  of a 
Lagrangian particle at an arbitrary flow point equal to the average angular velocity of rotation of medium particles in 
respect to the random curvature centres of the velocity fluctuation streamlines passing this point. The meridional 
distributions of vertical component of the gyration vector z  were estimated [7] from global surface drifter data with 

the averaging  performed over all available data on drifters located in the selected zonal bands and over all data-covered 
time extent of the years 1987-2004. The widths of the latitude bands selected for estimation are as follows: 5º from 50ºS 
to 70ºS and from 50ºN to 65ºN; 2º from 10ºS to 50ºS and from 10ºN to 50ºN, and 1º from 10ºS to 10ºN. The data set 
used is restricted to the area of the Pacific Ocean between 120ºE and 90ºW with the ocean depths exceeding 2 km. It 
turned out that the gyration vector z  is orientated anticyclonically at almost all latitudes. Only in a narrow band 

around 0º - 3º N the gyration vector appears orientated cyclonically. The elaborated theory enables to set up and answer 
several questions related to the observed meridional distribution of gyration including the problems of physical origin of 
the gyration, its impact on the formation of properties of the average flow and on the transport processes in the ocean. In 
particular, it highlights the importance of Earth's rotation in the formation of the distribution of gyration, suggests a 
physical explanation of anomalous transport perpendicular to the material gradient, and explains the eddy-to-mean 
energy conversion within the actual 3D structure of turbulence [8].  
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