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Abstract The incompressible Navier-Stokes equations form an exaethathematical model for turbulent flows. However, direct
simulations at high Reynolds numbers are not feasible Isecthe convective term produces far too many relevant soélestion.
Therefore, in the foreseeable future numerical simulatimiturbulent flows will have to resort to models of the smadlles. Large-
eddy simulation (LES) and regularization models are examtilereof. In the present work, we propose to combine bgitoaphes.
Restoring the Galilean invariance of the regularizationhoe results into an additional hyperviscosity term. Thipraach provides a
natural blending between regularization and LES. The perdnce of these recent improvements will be assessed thappmication

to homogeneous isotropic turbulence, a turbulent chanmeldhd a wind-farm turbulent boundary layer.

INTRODUCTION

The incompressible Navier-Stokes (NS) equations form aelent mathematical model for turbulent flows. In primétiv
variables they read

ou+Clu,u)=Du—Vp; V- -u=0, ()

wherew denotes the velocity fieldy represents the pressure, the non-linear convective tedafised byC(u,v) =

(u - V) v, and the diffusive term read3u = vAwu, wherev is the kinematic viscosity. Since direct numerical simiolas

of turbulent flows cannot be computed at high Rayleigh nuslzedynamically less complex mathematical formulation is
needed. The most popular example thereof is the Large-Eiduyl&ion (LES). Alternatively, regularizations of themo
linear convective term basically reduce the transport tde/éhe small scales: the convective term in the NS equations
C, is replaced by a smoother approximation [3, 1, 4]. In ouvimgs works [8, 7], we restricted ourselves to the
approximation [9]: the convective term in the NS equatidjsg then replaced by the following(e*)-accurate smooth
approximatiorC, (u, v) given by

Cs(u,v) =C(w,v) +C(u,v') + C(u, D), (2)

where the prime indicates the residual of the fileay, «' = u — @, which can be explicitly evaluated, and represents

a symmetric linear filter with filter length. However, two main drawbacks were observed: (i) due to tieegynconser-
vation, the model solution tends to display an additionahpun the tail of the spectrum (see Figure 1) and (ii) for very
coarse meshes the damping factor can eventually take verly sues.

RESTORING THE GALILEAN INVARIANCE: HYPERVISCOSITY EFFECT

The(, regularization preserves all the invariant transfornregiof the original NS equations, except the Galilean trans-
formation. This is a usual feature for most of the reguldiizes of the non-linear term [2]. This can always be recover
by means of a proper modification of the time-derivative teviith this idea in mind, and following the same principles
than in [9], new regularizations have been recently propas¢s]. Actually, they can be viewed as a generalisatioref t
regularization methods proposed in [9] where Galileanriavece is partially recovered by means of a modification ef th
diffusive term. Shortly, by imposing all the symmetries amhservation properties of the original convective opmrat
C(u,u), and cancelling the second-order terms leads to the fallpwne-parameter fourth-order regularization

Orue + CZ(U€7 ’U/g) = Dzue - Vb, (3)

where the convective and the diffusive terms are modified@énstime vein

1
Cl(u,v) = 5((04 +Cs) +7(Cs — C6))(u,v) and DJju=Du+5(Du'). (4)
wherey = 1/2(1++) andCg¢(u, v) = C(w,v) +C(u,v') + C(vw',v) + C(u/,v") . Notice that in this case the dissipation
is reinforced by means of an hyperviscosity term. As expgbdi@s basically acts at the tail of the energy spectrum
and therefore helps to mitigate the two above-mentionedlolieks. From a LES point-of-view, we can relate e,
regularization to a closure models for any invertible filtdihen, to apply the method two parameters still need to be
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Figure 1. Forced homogeneous isotropic turbulence energy specRaat= 202 for different models: no mode(;s without hyper-
viscosity,CD, model withy = 14.

determined; namely, the local filter length,and the constari. The former follows from the criterion that the vortex-
stretching mechanism must stop at the smallest grid schl@ i@ latter can be approximately bounded by assuming that
the smallest grid scale lies within the inertial range fotassical Kolmogorov energy spectrum. This has been adeftess
in [5] where the following bound was determined

724 (V20 - 1) (5)

whereC’ is the Kolmogorov constant. Simulations for homogeneaeisapic turbulence seems to confirm the adequacy
of the bound given by Eq.5 (see Figure 1). In this way, the psed method constitutes a parameter-free turbulence model
suitable for complex geometries and flows. Apart from honmegels isotropic turbulence numerical results evaluating
the performance of théD, method for wall-bounded configurations will be presentedrdythe conference. Namely, a
turbulent channel flow and a turbulent boundary layer. Asal fipplication, regularization modelling will be applieat f
large-scale numerical simulation of the atmospheric bamthyer through wind farms.
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