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Abstract The backbone of turbulence modeling is a detailed understanding of the mechanism causing the energy cascade [Kol-
mogorov,1941]. Earlier studies show that the energy cascade mechanism is strongly coupled with the alignment of the vorticity vector
and the principal strain axis. With the current work we will widen this knowledge by investigating this coupling in various flows with
different characteristics. This paper will show whether the conclusions found for equilibrium flows also hold for non-equilibrium flows.

INTRODUCTION

Turbulence, its production and the mechanism of its impact on the mean-flow is far from being fully understood. The lion’s
share of this incomprehension is founded in the non-linear behavior of the fluid flow. The non-linearity causes a transfer
of kinetic energy between the different scales of motion, that, together with the kinetic energy dissipation, is reflected in
the energy cascade [5]. The understanding of these processes is essential to develop and improve turbulence models. As
the inter-scale transfer of kinetic energy is strongly coupled to the amplification (positive or negative) of enstrophy, we
will focus on the enstrophy production in this work. The characteristics of the velocity gradient A := ∇~u, which can be
decomposed into the symmetric strain rate tensor S and the vorticity tensor Ω, play a fundamental role in the evolution of
enstrophy. This can be seen in the governing equations for the enstrophy and strain rate in their incompressible form
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The second term of the right hand side of (1) describes the enstrophy diffusion due to viscosity [6]. The quantity ~ωtS~ω,
with ~ω being the vorticity vector (~ω = ∇ × ~u), is the rate of amplification of enstrophy, and therefore called enstrophy
production. Neglecting the viscous diffusion, the production equals half the amplification of enstrophy over time and is a
measure of non-linearity in the Navier-Stokes equations [11]. Now let si (i = 1, 2, 3) be the eigenvalues of the strain rate
tensor and ~ei the corresponding eigenvectors. Then the enstrophy production can be rewritten as
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[1], whereˆmarks normalized vectors. In this notation the term ~̂ei · ~̂ω clearly states that the magnitude of enstrophy
production is strongly coupled with the alignment between the vorticity vector and the eigenvectors of the strain rate
tensor. This coupling was investigated by Buxton et al. [2] in the far field of an axisymmetric jet. The analysis of their
PIV data showed good agreement of their alignment results with previous literature. The vorticity vector tends to align
parallel with the intermediate eigenvector of the strain rate tensor, yet it tends to align perpendicular with the compressive
strain. This leads directly to a statistically stronger coupling of enstrophy production with intermediate strain than with
compressive strain. In the overall picture no alignment with the extensive strain was favoured. But with the further
condition to restrict the evaluated data to be collected from one of the four flow topologies defined by Chong et al. [4]
via the (Q,R)-plane, it was shown that the non-existing favoured alignment of ~ω and ~e1 is only a result of superimposed
counteractive alignment that cancels out each other. Indeed it shows strongly different behaviours for different local flow
topologies. So Buxton et al. [2] concluded that the (~ω,~e1)-alignment is crucial in determining whether the amplification is
positive (parallel alignment) or negative (perpendicular alignment). In a continuative work, Buxton et al. [3] studied these
results on different scales of motion. They filtered the same dataset with different resolutions to extract certain scales. The
same analysis as in [2] was then performed on the different scales with the outcome that the result is scale-independed
and therefore tends to have a universal character.
Considering these results [2, 3] the current work will investigate the enstrophy amplification in compressible flows of
different nature. We put their conclutions focusing equilibrium flow to the prove to hold for non-equilibrium flows.
Focus will be on the alignment between the vorticity vector and the eigenvectors of the strain rate tensor as well as
the eigenvectors of the velocity gradient. These will be studied for different classes of flow structures based on the
decomposition of [4]. The scale independence will also be investigated further.



RESULTS

To validate our post-processing tools with the experiment of Buxton et al. [2] we use DNS data of a similar compressible,
turbulent jet at M = 0.46 [9]. Figure 1 shows the mean velocity profile and the turbulent kinetic energy of this jet.
Supersonic axisymmetric wakes are interesting to study as they provide different flow topologies within one data set.
Figure 1 shows a snapshot of the local Mach number of Sandberg’s [7] DNS of an axisymmetric wake. We will apply our
post-processing tools on the compressible shear layer affected by an expansion fan (1) and the near wake region with the
recompression shock system (2). Further we will investigate a zero pressure-gradient flat-plate boundary layer at different
wall-normal locations. Preliminary results for the streamwise mean velocity profile as well as the RMS profiles in wall-
normal direction of this boundary layer at a Reynolds number based on momentum thickness of Reθ = 1410 are shown
in figure 2. Further we will study the enstrophy distribution in the wake of a low-pressure turbine (LPT) [8]. Isocontours
of Q = 25 from the DNS data (Figure 2) clearly show the wake which will be investigated.
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Figure 1. Left: Contours of the streamwise mean vel. (top) and turb. kinetic energy (bottom) of a round jet with co-flow [9] close to the
nozzle; Right: Local Mach number of the near wake region of a supersonic axisymmetric wake [7]. Areas of interest are highlighted.
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Figure 2. Left: First (red) and second (black) order statistics of [10](lines) and the present (symbols) TBL at Reθ = 1410 over
wall-normal direction.; Right: Isocontours of Q = 25 of the flow around a LPT and its wake [8].

References

[1] R.J. Betchov. An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech., 1:497–504, 1956.
[2] O.R.H. Buxton and B. Ganapathisubramani. Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech., 651:483–

502, 2010.
[3] O.R.H. Buxton, S. Laizet, and B. Ganapathisubramani. The interaction between strain-rate and rotation in shear flow turbulence from internal

range to dissipation length scales. Phys. Fluids, 23:061704, 2011.
[4] M.S. Chong, A.E. Perry, and B.J. Cantwell. A general classification of three-dimensional flow fields. Phys. Fluids, 2:765–777, 1990.
[5] A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Dokl. Akad. Nauk SSSR,

40(4), 1941.
[6] B.R. Morton. . Geophys. Astrophys. Fluid Dyn., 28:277–308, 1984.
[7] R. D. Sandberg. Numerical investigation of turbulent supersonic axisymmetric wakes. J. Fluid Mech., 702:488–520, 2012.
[8] R.D. Sandberg, R. Pichler, and L. Chen. Assessing the sensitivity of Turbine Cascade Flow to Inflow Disturbances using Direct Numerical

Simulation. In ISUAAAT 13. JSASS Publications, 2012.
[9] R.D. Sandberg, V. Suponitsky, and N.D. Sandham. DNS of compressible pipe flow exiting into a coflow. Int. J. Heat Fluid Fl., 35:33–44, 2012.

DOI: 10.1016/j.ijheatfluidflow.2012.01.006.
[10] P. R. Spalart. Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech., 187:61–98, 1988.
[11] A. Tsinober, M. Ortenberg, and L. Shtilman. On depression of nonlinearity in turbulence. Phys. Fluids, 11:2291–2297, 1999.


