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Abstract This study explores the nonlinear development of the barotropic instability in weakly supercritical horizontally sheared 
zonal currents on a beta-plane in the presence of vertical stratification. The energy exchange between unstable normal modes and the 
flow is shown to be confined to the common critical layer-region where the modal wave speed matches the flow velocity. A closed 
system of equations governing the evolution of instability wave amplitudes and critical layer vorticity distributions is derived with 
the aid of an asymptotic procedure. The dependence of the evolutionary scenarios of the flow on the values of the supercriticality and 
dissipation parameters is examined within the framework of qualitative and numerical analysis of the obtained equations. 

  
Exploring the development of the shear-flow (barotropic) instability in rotating fluid [1] has continued to attract 
considerable attention because of its relevance to the formation of large-scale vortical structures [2,3] and transition to 
turbulence [4,5] in horizontally sheared atmospheric and oceanic zonal flows. The physical mechanism feeding the 
instability near its onset in a weakly dissipative zonal flow is restricted to resonant extracting the kinetic energy from 
the flow by weakly unstable normal modes in the relatively thin critical layer (CL) surrounding a level where the wave 
speed of a marginal mode matches the mean flow [4-6]. The studies [4,5] seem to be the first to perform an asymptotic 
analysis of transition to turbulence and chaotic advection in parallel shear flows on the basis of the nonlinear CL 
concept. The objective of this research is to extend the asymptotic CL approach to exploring effects arising from the 
stable density stratification in a weakly dissipative barotropically unstable flow on a horizontal plane rotating with 
angular  velocity 2f .  Being specified by an antisymmetric mixing layer velocity profile   the background flow  ( )U y
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Figure 1. (a) Schematic illustration of the cat’s eye streamline pattern in the nonlinear CL of a zonal mixing layer. (b) 

The stability boundaries of the barotropic mode (a solid line) and the main baroclinic mode (a dashed line) for the zonal 
flow . (c) Vorticity pattern formed in the CL from the explosive growth of resonantly coupled modes  tanhU = y

 
is assumed to be directed along the x -axis and varies in the -direction  (Fig. 1(a)). The y β -effect (variation of 

Coriolis parameter f with ) is included. A simple model of density stratification in the vertical -direction with 

constant buoyancy frequency is adopted. According to the linear inviscid theory the basic flow is capable of supporting 
barotropic and baroclinic unstable normal modes whenever the gradient of the Coriolis parameter 

y z

β  is less than a 

critical value max( )m Uβ ′′=  [1]. Only two unstable modes (the barotropic mode and the main baroclinic one) sharing 

common CL in the vicinity of  where cy y= ( )U y c=  ( c  is a common phase speed of the marginal modes having 

wavenumbers  and ) are shown to develop in the flow near the instability onset provided that some restriction is 

imposed on the internal deformation radius value (Fig. 1(a,b)). Supercriticality of an inviscid flow defined as 
0k 1k

mδβ β β= −  is expressed through a small amplitude parameter ε : 1
pδβ ε β=  (this scaling allows the regimes of quasi-

steady ( ) and time-dependent (1p = 1 2p = ) CL to be considered). To capture effects arising from small dissipation a 

dimensionless viscosity parameter ν  (an inverse Reynolds number defined through the parameter of turbulent 
viscosity) is also scaled in terms of ε : 3 2

*ν ε ν= . Solution to equations describing the potential vorticity dynamics [1] 

is sought as a series in ε . An analysis of the asymptotic expansions outside and inside the CL and the matched 
asymptotics formalism (see also [5,6]) are employed to derive a closed system of equations governing the evolution of 
the instability modes amplitudes ja  ( ) and CL vorticity distribution 0,1j = ( , , , )z tξ ηΩ = Ω  
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where F  contains terms of the order ,  and (...) denote local averaging over zonal coordinate m na a ...〈 〉 с x ctξ = −  and 

evaluation at  respectively, cy y= cy yη = − , J  is a functional of modal profile ( )yϕ  and . Being written in 

terms of physical variables, equations (1)-(2) combine both variants of 

( )U y
δβ  scaling and allow one to study the shear 

flow dynamics over a relatively wide range of supercriticality. Linear terms j jaλ  reducing the growth rates of unstable 

modes due to the Ekman dissipation in the turbulent bottom layer [1] enter equations (1). Nonlinear resonant terms are 
included in amplitude equations (1) to describe nonlinear interaction between modes outside the CL-region which 
occurs when they satisfy condition . 0 12k k=

              0 100 200 τ=γ0t
0

10

20

|aj|

|a0|

|a1|

(a)

         0 100 200 300 τ=γ0t
0

10

20

30

|aj|

|a0|

|a1|

(b)

            0 20 40 60 80 τ=γ0t
0

0.2

0.4

0.6

0.8

|aj|

|a0| |a1|

(c)

     
 

Figure 2.  (a),(b) The  time evolution of the normalized mode amplitudes  2
j j ca a U lν′= in the regime of the nonlinear 

time-dependent CL for different initial conditions ( ( )1 3
0 cl k Uν ν ′=  is a viscous scale of the CL, 0γ  is a linear growth rate 

of the barotropic mode). (c) Development of the explosive instability in the regime of quasi-steady nonlinear CL.    
  
In the absence of nonlinear resonant coupling between modes and under sufficiently small supercriticality with 

2 3δβ ν�  the CL-flow is shown to evolve in a quasi-steady weakly nonlinear regime. In this case equations (1)-(2) are 

reduced to a set of two coupled Landau-Stuart amplitude equations describing simultaneous development of the 
unstable modes and the primary effect of the nonlinear interaction in the CL turns out to be the suppression of the 
baroclinic mode. At the higher level of supercriticality ( 1 3δβ ν∼ ) nonlinearity and time dependence play a significant 

role in the CL and development of the instability can no longer be described by the weakly nonlinear Landau-Stuart 
equations. It is shown with the aid of numerical analysis of the equations (1)-(2) that in this case the flow exhibits 
competition between modes and depending on the initial conditions for the mode amplitudes the instability saturates in 
pure barotropic or baroclinic regime (Fig. 2(a,b)). This evolutionary scenario crucially differs from that manifested by 
the unstable barotropic mode and linearly damping due to the Ekman dissipation baroclinic mode resonantly coupled 
through condition  (Fig. 2(c)). Initially in Fig. 2(c) instability saturates in barotropic regime but eventually 

explosive instability arising from the nonlinear resonant interaction inside and outside the CL comes into play and the 
flow evolves toward a coherent steady state consisting of phase-locked modes equilibrated in the regime of quasi-
stationary CL. This two-stage instability scenario is accompanied by development of periodic coherent structures in the 
vorticity distribution inside the common modal CL taking on the appearance of two-dimensional vortex chain at the 
intermediate barotropic stage and three-dimensional baroclinic vortex pattern at the stage of the explosive instability 
equilibration. Figure 1(c) shows a snapshot of the final state vorticity field at the level 

0 2k = 1k

0.75z = . 
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