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Abstract The dependence on the computational box size of the long-time statistics of homogeneous shear turbulence is systematically
studied in terms of the two aspect ratios defined byAxz = Lx/Lz andAyz = Ly/Lz . It is found that the spanwise dimensionLz is
the relevant scaling length, and thatSLz , whereS is the mean shear, is the scaling velocity. A range is identified, with1 . Axz . 4

andAyz & 1, in which the statistics agree very well with those of the logarithmic layer of wall-bounded flows, including the bursting
time scale. The aspect ratioAxz ≈ 3 is also similar to those found for the stress-carrying structures in channels. Boxes much shorter,
longer, or flatter than that range are found to fail for different reasons, which are identified.

INTRODUCTION

The simplest flow in which to investigate the interactions between turbulent fluctuations and the mean shear is homoge-
neous shear turbulence (HST hereinafter), which has a constant velocity gradient and spatially homogeneous statistics.
Pumir [1] studied statistically stationary (SS) HST, and found a succession of spikes of the kinetic energy and of the
enstrophy, reminiscent of the bursting phenomenon in wall bounded flows, suggesting that bursting is a property of
shear-induced turbulence not restricted to wall flows. In the series of simulations presented here, we also observe the
quasi-periodic formation of streamwise velocity streaks that become wavy and break down into ejections and sweeps
containing strong vertical velocities, as in the logarithmic layer of minimal boxes [2]. Interestingly, [3] showed that the
widths of the temporal correlations in SS-HST are very similar to those in minimal logarithmic layers, adding support
to the similarity of the self-sustaining mechanisms in bothflows. That suggests that SS-HST may be a useful model in
which to study the nonlinear dynamics of wall-bounded flows,especially as a way of reaching higher Reynolds numbers
than those possible for wall turbulence with comparable computer resources. Unfortunately, unlike wall turbulence, HST
has no intrinsic length scale and tends to “fill” any computational box, so that all long-time simulations are, in essence,
“minimal” in the sense of the channels in [4, 2]. Its behaviour depends on the computational box size, and our purpose
here is to identify the range of boxes in which the low-order statistics of SS-HST best approximate those of the logarithmic
layer.

RESULTS

The flow parameters are the streamwise, vertical and spanwise lengths of the computational box,Lx, Ly andLz, the
mean shearS (U = Sy), and the viscosityν, which can be reduced to two dimensionless aspect ratios,Axz = Lx/Lz

andAyz = Ly/Lz, and a Reynolds numberRez = SL2

z/ν. About seventy cases were examined in the ranges0.25 ≤
Axz ≤ 20, 0.16 ≤ Ayz ≤ 8 and500 ≤ Rez < 20000, and each one was run until the productionP=S 〈−uv〉 balanced
the dissipationε, and the one-point statistics reached statistical equilibrium. They can be classified into the five regions
of the aspect-ratio plane displayed in Fig. 1a, which servesas an index for the symbols in the rest of the figures.
Fig. 1b shows that the integral scale,Lε = q′3/ε, is approximately0.5Lz, except for the relatively short flat boxes with
Ayz < 0.5 (▽,�), andAxz . 4. Similar plots in terms ofLy andLx are widely scattered, showing thatLz is the most
natural scaling length, and justifying its use in the dimensionless parameters above. Note thatLz was also found to be the
relevant box dimension in the minimal channels in [4, 2]. Fig. 1b also serves to discard boxes with small vertical aspect
ratios as models for the logarithmic layer. A similar conclusion can be drawn from Fig. 1c, which showsu′/SLz as a
function ofAxz, and also collapses well except for the flat short boxes. It can be shown that the flattest boxes are also the
ones requiring a longestAxz before the velocity reaches its asymptotic value. Interestingly, it can be shown by inspecting
the spectra that the reason for the largerLε in the flat boxes is not that the structures become larger, butthat the dissipation
is impeded, probably by the anisotropy of the structures as they are chopped by the computational box. The inefficiency
of the dissipation also explains why the normalisedu′ increases in those cases.
Very short boxes of any height(×,▽) can be discarded based on figure 1d, which compares the shifted Lumley-invariants
map of the Reynolds-stress-isotropy tensorbij , defined as6η2 = −2I2 = bijbji, 6ξ3 = 3I3 = bijbjkbki. The figure
includes, as a blue line, the variation with the wall distance of the invariants of a channel atReτ = 1880, with the
logarithmic layer labelled as solid. Short HSF boxes withAxz ≤ 1(×, ▽), are very close to an axisymmetric state in
which the streamwise velocity component is stronger than the other two, which are roughly of the same magnitude. This
can be quantified by the energy partition parameter,2u′2/(v′2 +w′2), which increases from 3.01 to 34.48 for short boxes,
and inspection of the flow fields shows that the short boxes contain very strong straight streamwise velocity streaks that
break only rarely into ejections and sweeps, thus creating little transverse velocities. Longer and taller boxes fall within
the isotropy range of the logarithmic layer.
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Figure 1. (a) Regions in the space of box aspect ratios, with the symbols used in figures (b) to (e). (b) Integral lengths,Lε/Lz as a
function ofAxz. (c) Streamwise velocity r.m.s. fluctuations,u′/SLz , as a function ofAxz. (d) Lumley invariants. Blue line is a channel
at Reτ = 1880 [2], with the solid segment representing the log layer. Red and purple lines are the realisability limits. (e) Flatness
coefficient for the time evolution ofv′. (f) Time evolution of the velocity intensities for a long HST box (solid),Axz = 5, Ayz = 0.5

andReλ = 53, and for the inviscid linear RDT solution (dashed, two-dimensional in thex− y plane).�, u2; △, v2; ©, w2.

Boxes longer thanAxz > 1, and taller thanAyz ≈ 1 (©) have intensities,u′/SLz ≈ 0.24, v′/SLz ≈ 0.17 and
w′/SLz ≈ 0.18, which are very close to those in the logarithmic layer of channels. If we assume as in [5, 2] that
the spanwise extent of the structures isLz ≈ 3y, so thatSLz ≈ 3uτ/κ, whereκ is the Kármán constant, the channel
intensities areu′/SLz ≈ 0.3, v′/SLz ≈ 0.18 andw′/SLz ≈ 0.23. In this range, the stress correlation coefficient,
−〈uv〉/u′v′ ≈ 0.40–0.48, is also close to that in channels, and, especially below Axz ≈ 4, is where the statistics agree
best between HST and channels. Note that the aspect ratioAxz ≈ 3 is also similar to those found for the stress-carrying
structures in channels [5].
A different problem appears for very long boxes(Axz > 4, △), which manifests itself in the intermittency of the time
history of v′ (see Fig. 1e for the fourth-order flatness). The vertical velocity occasionally bursts very strongly, while
the flow becomes almost two-dimensional in thex − y plane. Those bursts are essentially linear, and are well described
by rapid-distortion theory (RDT), as in Fig. 1f. The DNS in the figure has a strongv2 peak, which follows closely the
two-dimensional RDT solution, and contains almost now2, showing that it is two-dimensional. Theu2 evolution is offset
from the RDT solution, but the latter is computed from zero initial conditions atSt → −∞, and is undetermined up to an
additive constant. When it is shifted to the DNS curve, both fit very well. Most of those long (or narrow) boxes eventually
decay to laminar, as befits two-dimensional flow. Note that the high flatness disappears belowAxz ≈ 4, where thev2

distribution is almost Gaussian, again as in the logarithmic layer.
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