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Abstract The dependence on the computational box size of the longgtatistics of homogeneous shear turbulence is systetiatic
studied in terms of the two aspect ratios defineddy = L. /L. andA,. = L,/L.. Itis found that the spanwise dimensién is
the relevant scaling length, and th&E ., whereS is the mean shear, is the scaling velocity. A range is ideutifivith1 < A,. < 4
andA,. 2z 1, in which the statistics agree very well with those of thealdgdhmic layer of wall-bounded flows, including the burstin

time scale. The aspect ratib,. =~ 3 is also similar to those found for the stress-carrying stm&s in channels. Boxes much shorter,
longer, or flatter than that range are found to fail for ddferreasons, which are identified.

INTRODUCTION

The simplest flow in which to investigate the interactionsaeen turbulent fluctuations and the mean shear is homoge-
neous shear turbulence (HST hereinafter), which has aaingtlocity gradient and spatially homogeneous staistic
Pumir [1] studied statistically stationary (SS) HST, andrfd a succession of spikes of the kinetic energy and of the
enstrophy, reminiscent of the bursting phenomenon in wallnoled flows, suggesting that bursting is a property of
shear-induced turbulence not restricted to wall flows. & dbries of simulations presented here, we also observe the
guasi-periodic formation of streamwise velocity stredkat tbecome wavy and break down into ejections and sweeps
containing strong vertical velocities, as in the logaritbitayer of minimal boxes [2]. Interestingly, [3] showed thhe
widths of the temporal correlations in SS-HST are very gimib those in minimal logarithmic layers, adding support
to the similarity of the self-sustaining mechanisms in bitdtvs. That suggests that SS-HST may be a useful model in
which to study the nonlinear dynamics of wall-bounded floggpecially as a way of reaching higher Reynolds numbers
than those possible for wall turbulence with comparablemater resources. Unfortunately, unlike wall turbulencg&H

has no intrinsic length scale and tends to “fill” any compotadl box, so that all long-time simulations are, in essence
“minimal” in the sense of the channels in [4, 2]. Its behavidapends on the computational box size, and our purpose
here is to identify the range of boxes in which the low-ordatistics of SS-HST best approximate those of the logaithm
layer.

RESULTS

The flow parameters are the streamwise, vertical and spariengths of the computational bok,, L, and L., the
mean sheaf (U = Sy), and the viscosity, which can be reduced to two dimensionless aspect ralips= L, /L.
andA,. = L,/L., and a Reynolds numbéte, = SL?/v. About seventy cases were examined in the rafges <

A, <20,0.16 < A,, < 8and500 < Re, < 20000, and each one was run until the productidas (—uwv) balanced
the dissipatiore, and the one-point statistics reached statistical eqiilib. They can be classified into the five regions
of the aspect-ratio plane displayed in Fig. 1a, which seagemn index for the symbols in the rest of the figures.

Fig. 1b shows that the integral scale, = ¢’ /¢, is approximately).5L ., except for the relatively short flat boxes with
A,. <0.5(7,0), andA,. < 4. Similar plots in terms o, andL, are widely scattered, showing th&t is the most
natural scaling length, and justifying its use in the dimenkess parameters above. Note thatwas also found to be the
relevant box dimension in the minimal channels in [4, 2]..Hif also serves to discard boxes with small vertical aspect
ratios as models for the logarithmic layer. A similar corsitun can be drawn from Fig. 1c, which showgSL, as a
function of A, and also collapses well except for the flat short boxes.nteashown that the flattest boxes are also the
ones requiring a longest, . before the velocity reaches its asymptotic value. Intarght, it can be shown by inspecting
the spectra that the reason for the larfigin the flat boxes is not that the structures become largethbuithe dissipation

is impeded, probably by the anisotropy of the structurefi@g are chopped by the computational box. The inefficiency
of the dissipation also explains why the normaliséthcreases in those cases.

Very short boxes of any heiglk, 57) can be discarded based on figure 1d, which compares thedshifteley-invariants
map of the Reynolds-stress-isotropy tensgr defined a$n? = —2I> = b;;b;;, 63 = 313 = b;;bjkby;. The figure
includes, as a blue line, the variation with the wall disewé the invariants of a channel &e¢, = 1880, with the
logarithmic layer labelled as solid. Short HSF boxes with, < 1(x, v/), are very close to an axisymmetric state in
which the streamwise velocity component is stronger tharother two, which are roughly of the same magnitude. This
can be quantified by the energy partition paramete?,/(v'? + w'?), which increases from 3.01 to 34.48 for short boxes,
and inspection of the flow fields shows that the short boxeta@orery strong straight streamwise velocity streaks that
break only rarely into ejections and sweeps, thus creaitithg) transverse velocities. Longer and taller boxes fathim

the isotropy range of the logarithmic layer.
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Figure 1. (a) Regions in the space of box aspect ratios, with the sysnised in figures (b) to (e). (b) Integral lengtlis,/L. as a
function of A,.. (c) Streamwise velocity r.m.s. fluctuation$/SL., as a function ofd,... (d) Lumley invariants. Blue line is a channel
at Re; = 1880 [2], with the solid segment representing the log layer. Red purple lines are the realisability limits. (e) Flatness
coefficient for the time evolution af'. (f) Time evolution of the velocity intensities for a long Ai%ox (solid),A,. = 5, A,. = 0.5
andRe, = 53, and for the inviscid linear RDT solution (dashed, two-disienal in ther — y plane).CJ, u?; A, v*; O, w?.

Boxes longer tham,. > 1, and taller than4,. ~ 1 (O) have intensitiesy’/SL, ~ 0.24, v'/SL, ~ 0.17 and
w'/SL, ~ 0.18, which are very close to those in the logarithmic layer ofrofels. If we assume as in [5, 2] that
the spanwise extent of the structured.is ~ 3y, so thatSL. ~ 3u,/k, wherex is the KArméan constant, the channel
intensities are.’/SL, ~ 0.3, v'/SL, ~ 0.18 andw’/SL, =~ 0.23. In this range, the stress correlation coefficient,
—(uv) /u'v’" ~ 0.40-0.48, is also close to that in channels, and, especiallynbdl,. ~ 4, is where the statistics agree
best between HST and channels. Note that the aspect4atie: 3 is also similar to those found for the stress-carrying
structures in channels [5].

A different problem appears for very long boxes,. > 4, A), which manifests itself in the intermittency of the time
history of v (see Fig. le for the fourth-order flatness). The verticabeigy occasionally bursts very strongly, while
the flow becomes almost two-dimensional in the y plane. Those bursts are essentially linear, and are wettidesl

by rapid-distortion theory (RDT), as in Fig. 1f. The DNS iretfigure has a strong? peak, which follows closely the
two-dimensional RDT solution, and contains almost#tg showing that it is two-dimensional. Thé evolution is offset
from the RDT solution, but the latter is computed from zelitahconditions atSt — —oo, and is undetermined up to an
additive constant. When it is shifted to the DNS curve, bdtheiy well. Most of those long (or narrow) boxes eventually
decay to laminar, as befits two-dimensional flow. Note thathigh flatness disappears belely. =~ 4, where thev?
distribution is almost Gaussian, again as in the logaritHeyer.
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