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Abstract Relation between the power-law transition in the energy spectra and the development of vortical structures for stably strat-
ified turbulence is investigated using direct numerical simulations (DNS) at a resolution of up to 20483. The calculation is done by
solving the 3D Navier-Stokes equations under the Boussinesq approximation pseudo-spectrally. Using toroidal-poloidal decomposition
(Craya-Herring decomposition), the velocity field is divided into the vortex mode (φ1) and the wave mode(φ2). Both the wave and
vortex spectra are consistent with a Kolmogorov–like k−5/3 range at sufficiently large k. At large scales, and for sufficiently strong
stratification, the wave spectra is a steeper k−2

⊥ , while that for the vortex component is consistent with k−3
⊥ . Here k⊥ is the hori-

zontally gathered wave numbers. While the Kolmogorov– like spectra are developing, some characteristic vortical structures appear
successively.

ENERGY SPECTRA

In the atmosphere and oceans, flows are often stably stratified, and clarifying the mechanism of stratification is a vital
problem in the whole geophysical and astrophysical fluid dynamics. In this paper, the energy spectra for forced stably
stratified turbulence are investigated numerically using the Direct Numerical Simulations (DNS) with up to 20483 grid
points (Rλ ∼ 300). The simulation is done by solving the 3D momentum equation under the Boussinesq approximation
pseudo-spectrally with stochastic forcing applied to the large horizontal velocity scales

Using toroidal-poloidal decomposition (Craya-Herring de-
composition), the velocity field is divided into the vortex
mode (φ1) and the wave mode (φ2). With the initial kinetic
energy being zero, the φ1 spectra as a function of horizontal
wave numbers, k⊥ =

√
k2

x + k2
y , first develops a k−3

⊥ spec-

tra for the whole k⊥ range, and then k
−5/3
⊥ part appears at

large k⊥ with rather a sharp transition wave number. Fig-
ure. 1 shows φ1 spectra for N2 = 1, 10, 50, 100 (from the
top to the bottom) where N is the Brunt–Väisälä frequency.
We can observe that the small k⊥ parts collapse to a sin-
gle spectrum of ∼ k−3

⊥ , while the large k⊥ parts have the
same slope of k

−5/3
⊥ but with different coefficients depend-

ing on N . For scaling these spectra, we use the following
two points as criterions; (1) the large scales do not depend on
N , (2) we expect that the Kolmogorov constant is universal
for the isotropic subset of anisotropic data, and we propose
the functional form as;

Figure 1. φ1spectra as a function of k⊥ for N2 =

1, 10, 50, 100. [4]
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The transition of energy spectrum from k−3
⊥ to k

−5/3
⊥ has been observed in the atmosphere[1] and in the ocean [2],[3].

Such a transition is possible when the Ozmidov buoyancy scale LO = (ε/N3)1/2 is larger than the dissipation scale
LK = (ν3/ε)1/4, with ε the energy dissipation rate, N the Brunt–Väisälä frequency, and ν kinematic viscosity.

VORTICAL STRUCTURES

In the course of development for a stationary shape, the horizontal spectrum undergoes some different stages. At the first
stage, it shows a single steep power-law (k4−5

⊥ ). By this time, we observe that many wedge vortices are produced and they



move horizontally (like dipoles) in random directions. This stage lasts a long period of time, and then the tail part of the
spectrum begins to rise to show the Kolmogorov-type slope (k−5/3

⊥ ). During the time of this stage, the wings of the wedges
become thinner and thinner while translating, and finally detach to be almost independent vortex layers. This thinning
mechanism makes the vertical shear stronger and eventually local Richardson number small to develop Kelvin-Helmholtz
billows. We will show that the horizontal breaking of the Kelvin-Helmholtz billows results in the Kolmogorov-type slope
in the spectrum. ( Figure. 2)

Figure 2. Left: Kelvin-Helmholtz billows in stably stratified turbulence. Right: The horizontal slice near the Kelvin-Helmholtz billow
(along the white line in the left figure). The numbers at axes are the grid numbers. [4]
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