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Abstract We investigate numerically the Lagrangian mixing of passive tracers inside a two-dimensional differentially heated cavity
filled with air. The onset of chaotic mixing corresponds to the loss of integrability of the Hamiltonian system governing the dynamics
of the particles. It is found to correspond to the value of the Rayleigh number Ra = Rac where the Eulerian flow undergoes a Hopf
bifurcation. A Melnikov function is computed to identify the emergence of a homoclinic tangles. Other mixing regions emerge due to
the breakdown of invariant tori due to K.A.M. resonances as Ra is increased. The evolution from incomplete towards complete mixing
is investigated as a function of Ra > Rac.

Tracking of passive tracers is the key for understanding Lagrangian mixing in the limit of zero molecular diffusion. We
consider here the flow of air inside a two-dimensional differentially heated cavity. The cavity has a geometrical height-
to-width aspect ratio of 2, the top and bottom walls are adiabatic while homogeneous temperatures, respectively cold and
hot, are imposed on both vertical walls. The flow is simulated under the Boussinesq approximation using an unsteady
spectral simulation code based on Chebyshev polynomials. Numerical tracking of neutrally buoyant particles is imple-
mented using a 4th order Runge-Kutta integrator. The base flow is characterised by a steady circulation around the cavity.
Once the Rayleigh number Ra is large enough, a thermally stratified core emerges, furthermore two detachment areas
appear near the corners (see Fig. 1). At Ra = Rac ≈ 1.6 × 108, the Eulerian flow undergoes a Hopf bifurcation and
bifurcates towards a time-periodic state characterised by oscillations of the two detached areas [1].

Since the geometry is two-dimensional and the flow is divergence-free, the dynamics of the particles is Hamiltonian,
where the Hamiltonian H corresponds to the streamfunction [2]. Lagrangian chaos occurs precisely when the Hamiltonian
system loses its integrability, i.e. for Ra = Rac. The topology of the steady base flow is first analysed with an emphasis
on detecting homoclinic and heteroclinic points. For each of them, considering the time-periodic Eulerian perturbation
occuring for Ra > Rac, we compute numerically the Melnikov function D. Its zeros predict multiple crossings of the
associated stable and unstable manifolds responsible for the formation of a homoclinic tangle, and hence for the onset of
chaotic mixing. Mixing is however spatially incomplete due to the survivance of Kolmogorov-Arnold-Moser tori within
any stroboscopic Poincaré section, that act as barriers against mixing. We show how such tori are destroyed by resonances
as Ra is increased. Mixing maps are constructed by seeding the flow with blobs of particles initially located near each
unstable Lagrangian periodic orbit identified in the system. They demonstrate how the system evolves towards complete
mixing when Ra increases, see Fig. 2. Interestingly, we conclude that predicting the onset of Lagrangian mixing and the
mixing map requires the sole knowledge of the linear stability characteristics of the steady base flow.
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Figure 1. Streamlines of the steady states of the system for (a) Ra = 1.0× 105 (b) Ra = 1.0× 107.

Figure 2. Left) Mixing map of the unsteady flow at Ra = 1.625× 108 > Rac. Colourbar: density of particles per small interrogation
box (of size 1.0 × 10−3 per 5.0 × 10−4) in a stroboscopic Poincaré section. Black circles: fixed points associated with the steady
base state, red and green lines: homoclinic and heteroclinic loops. Right) Melnikov functions associated with the homoclinic (top) and
homoclinic (center-left) loops shown in Fig. 2 (left).


