
14TH EUROPEAN TURBULENCE CONFERENCE, 1–4 SEPTEMBER 2013, LYON, FRANCE

HALL MAGNETOHYDRODYNAMIC HARMONIC-HELICON ABSOLUTE EQUILIBRIUM

Jian-Zhou Zhu
WCI Center for Fusion Theory, NFRI, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, Korea

Abstract L. Biferale et al.’s [Phys. Rev. Lett. 108 104501 (2012)] discovery of inverse energy cascade in a pure helical wave system
is consistent with Kraichnan’s theory of helical turbulence [J. Fluid Mech. 59 745 (1973)] which gives the absolute equilibrium energy
spectral density U(k) = 1/(α+βk)((((((+1/(α− βk), with the contribution of helical waves with negative helicity being removed (shown
by the slash in the formula). Such decomposition of Kraichnan’s spectrum corresponds to the calculation of the harmonic-helicon mode
absolute equilibrium in which further helical wave decomposition of the Fourier modes works to uncover the “degenerate states” and to
present the finer spectral structure. Here, I present Hall magnetohydrodynamics harmonic-helicon absolute equilibrium which is easier
and clearer for analysis and understanding of the statistical dynamics than previous studies, because, with the physical decomposition,
the denominators reduce to second order polynomials instead of fourth order — see, e.g., S. Servidio, W. H. Matthaeus, and V. Carbone,
Phys. Plasmas 15, 042314 (2008).

INTRODUCTION

In a communication with C.-C. Lin in 1945, L. Onsager noted that the coefficients of the Fourier modes (harmonics)
of hydrodynamic velocity field are “‘momentoids’ in the sense of Boltzman[n], and the theorem of equipartition would
apply if their number were finite. Since this is not the case, we get a ‘[ultra]violet catastrophe’ instead.” 1 The theorem of
equipartition was then rediscovered by T.-D. Lee [1] who introduced an upper limit of the wavenumbers and in particular
showed the Liouville theorem explicitly for both hydrodynamics (HD) and magnetohydrodynamics (MHD). These giants,
however, did not notice the importance of helicity which in general is also involved in the equipartition [2, 3]. Indeed,
it was later when the importance of helicity was literally formulated (see, e.g., Moffatt and Tsinober [4] for a historical
account), though helicity invariance is in the older Helmholtz-Kelvin theorem. Now, it has been widely realized that
helicity plays an important role in dynamics in various situations, and tremendous progresses have been made, including
notably those associated with helical wave decomposition [5, 2, 6, 7, 8, 9], among others.

HARMONIC-HELICON MODES

The Fourier helical mode decomposition for a 3D transverse vector field (velocity u, transverse part of potential vector
A, magnetic field B = ∇×A and vorticity ω = ∇× u etc.) in a cyclic box, with volume V = (2π)3, reads

v =
∑
k

v̂(k)eîk·r =
∑
c

vc =
∑
k

∑
c

v̂c(k)ĥc(k)e
îk·r. (1)

Here î2 = −1 and the indexes “c” is for “chirality” (“+” or “-”) with c2 = 1; and the helical mode (complex vector)
bases have the following properties îk × ĥc(k) = ckĥc(k), ĥc(−k) = ĥ∗c(k) = ĥ−c(k) and ĥc1(k) · ĥ∗c2(k) = δc1,c2
(Euclidean norm). We use Coulomb gauge (Â · k = 0), so îk× [̂ik× Â(k)] = k2Â(k) = îk× B̂(k): The longitudinal
component of A (with whatever gauge) is not involved here and later in the relevant calculations, so Coulomb gauge is
not really necessary; we use this gauge just for convenience without loss of physics.

Waleffe [6] has looked into the detailed interacting triads of harmonic-helicon modes in Navier-Stokes for making theories.
It is routinary to check that Liouville theorem and ruggedness of the quadratic invariants after Galerkin truncation, keeping
only modes in [kmin, kmax], which are true for all the models studied here. Noteworthily, Ditlevsen and Giuliani [7]
studied the properties of separate +/- channels, which were critically reexamined by Chen et al. [8], emphasizing the
exchanges between the two channels. It should be pointed out that further truncation of “+”- or “-”-modes, such as
completely screening out one of the channels as done by Biferale et al. [9], for the inviscid system leads still to a
conservative system. I will call each object being summed up in Eq. (1) harmonic helicon.

HARMONIC-HELICON ABSOLUTE EQUILIBRIUM

It can be shown [11] that the discovery of inverse energy cascade made by Biferale et al. [9] is consistent with Kraich-
nan’s theory of helical turbulence [2] (K73) where the absolute equilibrium spectral density of energy is given by
U(k) = 1/(α + βk)((((((

+1/(α− βk). Here the contribution from the negative helicity, say, of left-handed helical modes is
removed as designated by the slash, in accordance with Biferale et al.’s scheme of turning off one of the channels (they

1The letter was reproduced by G. Eyink and K. R. Sreenivasan [Review of Modern Physics, 78, 87 (2006), p. 126], who did not discuss but later
acknowledged this remarkable comment: Private communication (2008).



called it “decimation”.) The left part is then exactly the same as the 2D electrostatic gyrokinetics [12] absolute equilib-
rium, on the diagonal of configuration-velocity scale space, given in [11] where interesting analogy between these two
system was made. The point here is that the low helicity (gyrokinetic enstrophy in 2D gyrokinetics [11]) state corresponds
to a negative temperature parameter α associated with energy and a positive temperature parameter β with helicity, like
the case of 2D turbulence [10] (K67) but unlike K73: K73 considered the dynamics of mixed helical waves and that low
helicity state corresponds to vanishing β with positive α and that equipartition of energy. A negative α condensates most
of the energy in the modes with wavenumber close to the singular value ks = −α/β.

To be more specific, Galerkin truncated ideal hydrodynamic equations have the rugged invariants [2], kinetic energy
EK = 1

2V
∫
u2d3r = 1

2

∑
k,c |ûc(k)|2 and kinetic helicity HK = 1

2V
∫
∇ × u · ud3r = 1

2

∑
k,c ck|ûc(k)|2. As

K73, the Gibbs distribution2 ∼ exp{−(αEK + βHK)} gives immediately the spectral densities of energy and helici-
ty U cK(k) = 1

α+c·βk , and QcK(k) = c ·kU cK(k) = c·k
α+c·βk . Summing up over c we get the K73 spectra.3 In another word,

the above results are simple decomposition of K73 spectra, but with clear physical meaning for either element. When the
flow is dominated by helical modes with positive helicity or the positive helical modes are isolated as Biferale et al. [9]
did, we may use only the c = + component which is analogous to the K67 spectra.

I have performed similar calculations and analyses for various magnetohydrodynamic models [13], to demonstrate the
harmonic-helicon power and to survey the properties of different helicities, including two-fluid MHD, Hall MHD, classical
single-fluid MHD and electron MHD. Here, I present the Hall MHD results. This model is Hamiltonian with the canonical
momenta (see, e.g., [14, 15]) pi = meu+ qiA and pe = qeA, from which one can find the rugged invariants, magnetic
helicity HM = 1

2V
∫
A · Bd3r and “generalized” helicity HG = 1

2V
∫
(u · B + ε

2ω · v)d
3r, besides total energy

E = 1
2V

∫
[u2 +B2]d3r, and the spectral densities are:

U cK(k) = −4 αk + cβM
Dc
H

, U cM (k) = −2 (2α+ cβG ε k) k

Dc
H

, QcM (k) =
c

k
U cM (k), and QcG(k) = 2

βG k

Dc
H

+ c
ε

2
kU cK(k),

withDc
H(k) = −4α2k−c ·4αβM −c ·2βG ε k2α−2βG ε kβM +βG

2k. The new notations follow the rule in the above
and are explained by themselves. Summation over the c index produces Servidio et al. [16]: For comparison, I have used
exactly the same form of invariants as theirs and that my α corresponds to their β, βG to their γ and βM to their θ.

DISCUSSION

With the above “pre-decomposed” Hall MHD harmonic-helicon absolute equilibrium, we can have much simpler and
clearer analysis and understanding of the dynamics. (“Post-decomposition” of Servidio et al.’s [16] formulae is possible
but formidable, not to mention the physics.) Otherwise, one has to deal with 4th order polynomials in the denominators.
It is easier to derive the spectral properties, Hall effects, and so on and so forth. In particular, it can be used to guide direct
numerical simulations with Biferale et al.’s [9] scheme or others, which we will do.
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2From now on, we will always use α for the energy related temperature parameter and β, with self-evident index when necessary, for the helicity,
and we will always use the distribution of this style for the standard calculation; so, we will not repeatedly formulate and explain them.

3Here and below, we frequently use a · between c and the other quantities that are multiplied by it, just to highlight its effect.


