
14TH EUROPEAN TURBULENCE CONFERENCE, 1–4 SEPTEMBER 2013, LYON, FRANCE

STREAMLINE GEOMETRY AND THE TURBULENT DISSIPATION FIELD

Philip Schaefer1, Jonas Boschung 1, Markus Gampert 1 & Norbert Peters 1

1Institut für Technische Verbrennung, RWTH Aachen University, Aachen, Germany

Abstract The highly intermittent nature of the instantaneous dissipation field is analyzed based on highly resolved direct numerical
simulations of homogeneous isotropic turbulence at various Taylor based Reynolds numbers. The dissipation field is decomposed into
the composition stemming from the enstrophy ω2 and the one from the second invariant of the velocity gradient tensor Q. The latter
seems to regulate the lower intermittency of the dissipation field ε compared to the intermittency of the enstrophy field as it often
times counteracts large positive bursts of ω2. Based on a local coordinate system attached to streamlines, we decompose Q into three
different contributions which are amenable to a geometric interpretation in terms of streamlines and related geometries. It turns out
that the term proportional to the local curvature of streamlines and the gradient of the turbulent kinetic energy perpendicular to the
streamline regulates the large bursts of the enstrophy.

ANALYSIS

The instantaneous enstrophy (vorticity squared) field and that of the instantaneous dissipation are known to be closely
related,

ε = 2νsijsij = ν
(
ω2 − 4Q

)
, (1)

where sij denotes the symmetric part of the velocity gradient tensor, ω2 the enstrophy and Q the second invariant of
the velocity gradient tensor. Simple averaging shows that in homogeneous isotropic turbulence, as 〈Q〉 = 0, the mean
dissipation is directly proportional to the mean enstrophy 〈ε〉 = ν〈ω2〉. However, this average relation does not imply
anything about the instantaneous spatial correlations of the dissipation field and the enstrophy field. In fact, until recently
it was believed that the enstrophy field is more intermittent than the dissipation field, cf. [4, 2]. However, recent analyses
based on highly resolved DNS covering a range of Reynolds numbers up to Reλ = 1000 imply that at high Reynolds
numbers the two statistics seem to approach each other, cf. [7]. For the understanding of the intermittent structure of the
instantaneous dissipation field in turbulent flows it is thus necessary to better understand the interplay of the enstrophy
field withQ. This work focuses on the role of theQ field and how it influences the intermittent character of the dissipation
field. To this end we propose to decompose Q into terms which are amenable to a geometric interpretation in a natural
coordinate system attached to streamlines based on the fluctuating velocity field. We denote with ti the unit tangent vector
to streamlines

ti =
dxi
ds

=
ui
u
. (2)

The unit normal vector ni points in direction of the "acceleration" along the curve

ni =
1

κ

dti
ds
, (3)

where κ = |dti/ds| denotes the geometric curvature of streamlines. The system is completed with the binormal vector
defined as

~r = ~t× ~n. (4)

Then, the rate of change of all three vectors is described by Frenet’s formulas [1]. The geometric properties of particle
paths (the analogon to streamlines in an evolving turbulent field) have for instance been studied by Rao [5] and Braun
et al. [1], whose ideas have been extended to the geometric properties of streamlines by Schaefer [6]. With the above
definitions we can express Q as

Q = −

k (H2 −K
)︸ ︷︷ ︸

T1

+κ
∂k

∂n︸︷︷︸
T2

 , (5)

where k = u2/2 denotes the turbulent kinetic energy field, H and K denote the two invariants of the streamline curvature
tensor ∂ti/∂xj and ∂/∂n the gradient projected in ni direction perpendicular to the streamline. The streamline curvature
tensor ∂ti/∂xj and thus its invariants encode geometric information of the infinitesimal surface locally normal to a
streamline, cf. [3], while the curvature κ describes the geometry of the streamline itself.



Figure 1. Top: instantaneous balance of the three terms in eq. (1). Bottom: instantaneous balance of the three terms in eq. (5).

RESULTS

Figure 1 (top) shows a representative instantaneous realization of the three terms in eq. (1) along an arbitrary coordinate
direction in the DNS of homogeneous isotropic forced turbulence with a Taylor based Reynolds number of Reλ =
180. The dotted line indicates the mean energy of the entire box. One clearly observes the intermittent structure of the
dissipation as well as the enstrophy field with the latter being more intermittent than the first. One especially observes
that the term proportional to Q "regulates" the largest peaks of the enstrophy field yielding a less intermittent dissipation
field. On the other hand large values of the dissipation seem to preferably occur in regions where Q is close to zero or
negative so that the enstrophy is not "damped" or even amplified.
To better understand the dynamics of Q, figure 1 (bottom) shows the decomposition of the term proportional to Q fol-
lowing eq. (5). It is clearly observable that the large positive peaks of Q lead to a dampening of the large peaks of the
enstrophy and are mainly due to the term labeled T2 in eq. (5) which is proportional to the geometric curvature of the
streamlines and the gradient of the turbulent kinetic energy perpendicular to the local streamline direction. On the other
hand the comparably quite negative fluctuations of this term seem to be dominated by the first term labeled T1.
Further statistical analysis will be carried out based on four different DNS of homogeneous isotropic turbulence with
Taylor based Reynolds numbers in the range of Reλ = 100 − 350. This will allow to assess the Reynolds number
dependence of the different terms in the decomposition of Q and its relation to the dissipation and enstrophy field. Also,
the decomposition in eq. (5) will be used to further explain the role of (local and non-local) pressure fluctuations induced
by large values of Q based on the Poisson equation for incompressible turbulence.
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