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Abstract Modal and non-modal stability analysis of counterflowing superfluidHie-a channel is attempted in this paper. Landau’s
two fluid model is assumed and the mutual friction between two componeassisned to be uniform across the channel. Mutual
friction is found to be stabilizing normal fluid when a linear modal and naah stability analysis were performed. When both the
components are perturbed simultaneously, though linear analysis i®fisw is stable, the transient growth shows instability even
for Reynolds number as lows as

INTRODUCTION

Helium has two isotopes, of whictHe has very low viscosity below 2.17 K and referred as sugdrfilelium or He

II. The hydrodynamics of superfluid is explained using Larisiawo fluid model. The model describes superfluid as an
inseparable mixture of two fluids, a viscous normal fluid comgnt and an inviscid superfluid component, each having
different velocity and density fields. The interaction begén two components is represented using a mutual frictiom te
which is proportional to the relative velocity of two compuonts. Stability analysis of plane Poiseuille flow of He 11, in
which both the components flow in same direction, has beemated before. Godfrest al[1] and Bergstrém[2] found
mutual friction destabilizes normal fluid, where as Soorap&meen[3] modified the mean profile as Reynolds number
dependent and showed that mutual friction stabilizes Helére we consider thermally excited counterflow turbulence
in a channel. In counterflow turbulence, experimentallyaswobserved that the vortex line density across the chasinel i
uniform[4]. For counterflowing superfluid, Galantuetial[5] assumed uniform mutual friction across the channel and
computed superfluid velocity profile when normal fluid vetggirofile is parabolic. The same profiles are used here to
investigate the effect of uniform mutual friction on statlgibf the flow. Two scenarios are investigated; one in whintyo
the normal component is perturbed and the other in which thaetltomponents are perturbed simultaneously.

FORMULATION

The normal fluid and superfluid momentum equations are cduiiough mutual friction term, which arises due to
interaction of normal fluid with the quantized vortices irpsdfluid. The mutual friction, which depends on temperature
and relative density of superfluid component, is simplifisdild

me = f(y) (Vn - Vs) ) (1)

whereV,, andV; are normal and superfluid velocities afif) depends on the superfluid vortex line density across the
channel. A parabolic normal fluid velocity is assumed, forahlGalantuccet al[5] found the superfluid velocity also to
be parabolic when the mutual friction is uniform across thenmel. For the stability analysis we assuvhe= 1/3 — y2

and f(y) as constant. The Orr-Sommerfeld and Squire’s equationsoignal fluid component are as follows.

1

i(aUy — w) (D* = k?) 0y — iaU}) o, = o (D* = k?) = f(D* = k*) 0 + f (D — k?) b5 )

Z(O‘Un_w)_é(DQ_kQ)_‘_f ﬁn:_lﬁlezﬁn'i'fﬁs (3)
Tp = Op(y)et@® P2 andf, = 7, (y)e(@*+#2=«) are the normal fluid velocity and vorticity perturbationspec-
tively. « and g are streamwise and spanwise wavenumberswaigl frequency of perturbation waveD represents
differentiation iny andk? = a2 + 32. ¥, and#, are superfluid velocity and vorticity perturbations witte thame
wavenumbers and frequency as that of normal fluid. When thealdtuid component alone is subjected to disturbances,
the terms containing; and7), vanish.

The equations for wall normal velocity and vorticity peliations for superfluid are;

i(aUs — w) (D* — k%) by — iaUl'vs = — f (D?* — k*) 05 + f (D* — k?) 0, (4)

[i (aUs —w) + f] s = _Z.BU;{}S + fiin (5)

These four equations [2-5] are simultaneously solved tdipréhe stability of the flow, subject to the boundary coiwatis
o, = D, = 05 = 7, = 75 = 0 at the walls, using Chebyshev spectral methods.



MODAL AND NON-MODAL STABILITY

For a uniform mutual friction across the channel, normalfigi found to be exponentially stable without any unstable
modes for Reynolds number as highl@s. When both components are simultaneously perturbed, itisdfdhat almost
all the modes obtained are neutrally stable. The resulis@ét stability analysis shows that mutual friction stizlei the

normal fluid.

The transient growth analysis, similar to as that in [3, 61,rformal fluid also underlines the same. Even for a very small
value of mutual frictionf = 0.01), the growth is only about0% as that observed in classical fluids (fig.1(a)). At high
values off, the damping is more evident. From fig.1(b), for= 0.5 the initial perturbation is not allowed to grow and is
damped monotonically even at a Reynolds number where tesicid fluid tends to become unstable.
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Figure 1. Transient growth in normal fluid: = 0, 8 = 2 (a) Re = 1000. (b) Re = 8000

However, non-modal analysis, when both the componentsratgtaneously disturbed, predicts a different result. Ogio

the flow is found to be stable even at very high Reynolds nuritbire modal analysis, the transient growth makes the
flow highly unstable (fig.2(a)). The instability is seen atyw®w Reynolds number (fig.2(b)) and even in the absence of
mutual friction coupling. Transient growth observed irstbase can be attributed to the interaction between nornigl flu
modes and superfluid modes which is not through mutual dri¢tbut due to non-orthogonality of modes. (More will be

discussed about this at the conference).
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Figure 2. Transient growth when both components are simultaneously pertgebed0, 5 = 2). (a) At Re = 1000 for different

values off, (b) For f = 0.1 at different Reynolds number
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