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Abstract Modal and non-modal stability analysis of counterflowing superfluid He-II in a channel is attempted in this paper. Landau’s
two fluid model is assumed and the mutual friction between two components isassumed to be uniform across the channel. Mutual
friction is found to be stabilizing normal fluid when a linear modal and non-modal stability analysis were performed. When both the
components are perturbed simultaneously, though linear analysis showsthe flow is stable, the transient growth shows instability even
for Reynolds number as lows as1

INTRODUCTION

Helium has two isotopes, of which4He has very low viscosity below 2.17 K and referred as superfluid Helium or He
II. The hydrodynamics of superfluid is explained using Landau’s two fluid model. The model describes superfluid as an
inseparable mixture of two fluids, a viscous normal fluid component and an inviscid superfluid component, each having
different velocity and density fields. The interaction between two components is represented using a mutual friction term,
which is proportional to the relative velocity of two components. Stability analysis of plane Poiseuille flow of He II, in
which both the components flow in same direction, has been attempted before. Godfreyet al[1] and Bergström[2] found
mutual friction destabilizes normal fluid, where as Sooraj &Sameen[3] modified the mean profile as Reynolds number
dependent and showed that mutual friction stabilizes He II.Here we consider thermally excited counterflow turbulence
in a channel. In counterflow turbulence, experimentally it was observed that the vortex line density across the channel is
uniform[4]. For counterflowing superfluid, Galantucciet al[5] assumed uniform mutual friction across the channel and
computed superfluid velocity profile when normal fluid velocity profile is parabolic. The same profiles are used here to
investigate the effect of uniform mutual friction on stability of the flow. Two scenarios are investigated; one in which only
the normal component is perturbed and the other in which boththe components are perturbed simultaneously.

FORMULATION

The normal fluid and superfluid momentum equations are coupled through mutual friction term, which arises due to
interaction of normal fluid with the quantized vortices in superfluid. The mutual friction, which depends on temperature
and relative density of superfluid component, is simplified as [1]

Fmf = f(y) (Vn − Vs) , (1)

whereVn andVs are normal and superfluid velocities andf(y) depends on the superfluid vortex line density across the
channel. A parabolic normal fluid velocity is assumed, for which Galantucciet al[5] found the superfluid velocity also to
be parabolic when the mutual friction is uniform across the channel. For the stability analysis we assumeVs = 1/3− y2

andf(y) as constant. The Orr-Sommerfeld and Squire’s equations fornormal fluid component are as follows.
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ṽn = v̂n(y)e
i(αx+βz−ωt) andη̃n = η̂n(y)e

i(αx+βz−ωt) are the normal fluid velocity and vorticity perturbations respec-
tively. α andβ are streamwise and spanwise wavenumbers andω is frequency of perturbation wave.D represents
differentiation iny and k2 = α2 + β2. ṽs and η̃s are superfluid velocity and vorticity perturbations with the same
wavenumbers and frequency as that of normal fluid. When the normal fluid component alone is subjected to disturbances,
the terms containing̃vs andη̃s vanish.
The equations for wall normal velocity and vorticity perturbations for superfluid are;
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These four equations [2-5] are simultaneously solved to predict the stability of the flow, subject to the boundary conditions
v̂n = Dv̂n = v̂s = η̂n = η̂s = 0 at the walls, using Chebyshev spectral methods.



MODAL AND NON-MODAL STABILITY

For a uniform mutual friction across the channel, normal fluid is found to be exponentially stable without any unstable
modes for Reynolds number as high as105. When both components are simultaneously perturbed, it is found that almost
all the modes obtained are neutrally stable. The results of linear stability analysis shows that mutual friction stabilizes the
normal fluid.
The transient growth analysis, similar to as that in [3, 6], for normal fluid also underlines the same. Even for a very small
value of mutual friction(f = 0.01), the growth is only about30% as that observed in classical fluids (fig.1(a)). At high
values off , the damping is more evident. From fig.1(b), forf = 0.5 the initial perturbation is not allowed to grow and is
damped monotonically even at a Reynolds number where the classical fluid tends to become unstable.
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Figure 1. Transient growth in normal fluidα = 0, β = 2 (a) Re = 1000. (b) Re = 8000

However, non-modal analysis, when both the components are simultaneously disturbed, predicts a different result. Though
the flow is found to be stable even at very high Reynolds numberin the modal analysis, the transient growth makes the
flow highly unstable (fig.2(a)). The instability is seen at very low Reynolds number (fig.2(b)) and even in the absence of
mutual friction coupling. Transient growth observed in this case can be attributed to the interaction between normal fluid
modes and superfluid modes which is not through mutual friction, but due to non-orthogonality of modes. (More will be
discussed about this at the conference).
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Figure 2. Transient growth when both components are simultaneously perturbed(α = 0, β = 2). (a) At Re = 1000 for different
values off , (b) Forf = 0.1 at different Reynolds number

References

[1] S. P. Godfrey, D. C. Samuels, and C. F. Barenghi, “Linear stability of laminar plane Poiseuille flow of Helium II under a nonuniform mutual
friction forcing,” Phys. Fluids, vol. 13, no. 4, p. 983, 2001.

[2] L. B. Bergström, “The initial-value problem for three-dimensional disturbances in plane Poiseuille flow of Helium II,” J. Fluid Mech., vol. 598,
pp. 227–244, 2008.

[3] R. Sooraj and A. Sameen, “Effect of vortex line distribution in superfluid plane Poiseuille flow instability,”J. Fluid Mech., (accepted),2013.
[4] L. Skrbek and K. R. Sreenivasan, “Developed quantum turbulence and its decay,”Phys. Fluids, vol. 24, p. 011301, 2012.
[5] L. Galantucci, C. F. Barenghi, M.Sciacca, M.Quadrio, and P.Luchini, “Turbulent superfluid profiles in a counterflow channel,”J. Low Temp. Phy.,

vol. 162, pp. 354–360, 2011.
[6] P. J. Schmid and D. S. Henningson,Stability and Transition in Shear Flows. Springer, 2001.


