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Abstract The nonlinear stability analysis of a stationary rotation of a system of five identical point vortices lying uniform on a circle
of radius R0 outside a circular domain of radius R is performed. The problem is reduced to the problem of equilibrium of Hamiltonian
system with cyclic variable. The stability of stationary motion is interpreted as Routh stability. The conditions of stability, formal
stability and instability are obtained subject to the parameter q = R2/R2

0.

INTRODUCTION

The stability problem of stationary rotation of the system of n identical point vortices lying uniformly on the circle
(Thomsons vortex n-gons) was set by Kelvin (W. Thomson). There are generalizations of this problem to the cases of
vortices inside and outside circular domain. All of these problems were solved by Havelock [1] in linear statement. It
was found that corresponding linearized systems have exponentially growing solutions at n ≥ 8 in the Kelvin’s problem
and at n ≥ 7 in its generalizations. The exponential instability takes place at 2 ≤ n ≤ 6 (the vortices inside and outside
circle) in the case of certain values of the parameter. In the rest cases all of the eigenvalues of linearization matrix lie on
a imaginary axis, so to solve of the problem is required nonlinear analysis.
The investigations of Kelvin problem at n ≤ 7 was completed in the exact nonlinear statement in [2, 3, 4]. The results of
nonlinear analysis in a circular domain were announced in [5], detailed for evenness of the number of vortices n = 2, 4, 6
in [6], and separately detailed for triangle [7] and pentagon [8].
The stability of Thomsons vortex n-gons (n = 2, 4, 6) outside a circular domain was studied in framework of unified
approach in [9], and the stability of vortex triangle was studied in [11].
In this paper the nonlinear analysis of the stability of Thomsons vortex pentagon outside a circle is studied. The results is
detailed in [10]. It based on results of A.D.Bruno, A.P.Markeev and A.G. Sokol’sky (see [12] and review [13]).

STATEMENT OF THE PROBLEM AND FORMULATION OF RESULTS

The motion of a system of n point vortices on a plane outside a circle of radius R is governed by the equations with the
Hamiltonian (see, for example, [14])
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Here, zk = xk + iyk, k = 1, . . . , n are complex variables; xk, yk are the Cartesian coordinates of the kth vortex; κk is
the intensity of the kth vortex.
Here we assume that all vortices have the same intensity κ. The system with the Hamiltonian (1) has an exact solution
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Therefore, a configuration of n identical vortices lying on the circle of radius R0 at the vertices of a regular n-gon rotates
with a constant angular velocity ω = ω(q).
The stability of stationary rotation (2) of a vortex pentagon is analyzed. By a changes of variables the problem is reduced
to the problem of a Hamiltonian system with a cyclic coordinate. Excluding the momentum corresponding to the cyclic
coordinate, we obtain a reduced Hamiltonian system. The stability of the stationary rotation (2) is interpreted by us
as Routh stability [15]. By Routh stability of the stationary rotation (2), we shall mean the Lyapunov stability of the
equilibrium position of this reduced system. Correspondingly, instability of a vortex polygon will imply the Lyapunov
instability of this equilibrium position.
Hereafter we use the concept of formal Routh stability, which is defined as a formal Lyapunov stability of a reduced
system. A formal Lyapunov stability of equilibrium of a system means (see, for example, [12]) that there is a power series
(possibly divergent) which is formally an integral of the system reaching a minimum at this equilibrium.
A criterion for the stability of the stationary rotation (2) of the vortex pentagon, is shown schematically in Fig. 1.



The resonances (see, [12, 13]) in which: q05 is double zero (diagonalizable case), q∗ is resonance 1:2, q∗5 is resonance
1:1 (nondiagonalizable case) correspond to the critical values of the parameter q

q05 = .3303989374, q∗ = .3333770174, q∗5 = .3345958365 (3)

Figure 1. A stability criterion for Thomson’s vortex pentagon outside circle: q ∈ (0, q05) is Routh stability (++); q ∈ [q05, q
∗) ∪

(q∗, q∗5] – is formal Routh stability (solid arc); q = q∗ and q ∈ (q∗5, 1) is instability (- -). The critical values of parameter q are given
in (3).

.

At 0 < q < q05 Routh stability follows from positive definiteness of Hamiltonian of linearized reduced system. At
q∗5 < q < 1 the instability was proved by Havelock [1]. The corresponding linearized system has exponentially growing
solutions.
The proof of formal Lyapunov stability of reduced hamiltonian system of four degrees of freedom at q ∈ (q05, q∗5)\q∗
consisted in the verifying of the Bruno’s theorem conditions [16]. At q = q05 the critical case of double zero eigenvalues
(diagonalizable case) take place in the stability problem. The formal stability follows from A.G. Sokol’sky results (see
[13, 17])). In the critical case of double pairs of imaginary eigenvalues (jordan block) at q = q∗5 the proof of formal
Routh stability repeats Sokol’sky arguments [18]. At q = q∗ the critical case of resonance 1 : 2 takes place. Instability is
proved by application of A.P. Markeev results [20, 13, 19].
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