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Abstract The results presented here examine the quasi-geostrophic dynamics of a point vortex structure with one upper layer vortex and
two identical bottom layer vortices in a two-layer fluid. In the present work, the existence conditions for stable stationary (translational
and rotational) collinear two-layer configurations of three vortices are obtained. Small disturbances of stationary configurations lead to
periodic oscillations of the vortices about their undisturbed shapes. These oscillations occur along elliptical orbits up to the second order
of the Hamiltonian expansion. Analytical expressions for the parameters of the corresponding ellipses and for oscillation frequencies
have been obtained.
We study fluid particle motion in the velocity field induced by a considered point vortex structure. The regular regimes are investigated,
and the possibility of chaotic regimes (chaotic advection) under the effect of quite small nonstationary disturbances of stationary con-
figurations has been shown. It is shown that regular and chaotic advection situations exhibit significant differences in both layers.

PROBLEM FORMULATION

The equations of motion of a point vortex system in a two-layer inviscid fluid rotating with an angular velocity f/2 (f
is the constant Coriolis parameter) under the quasi-geostrophic approximation and assuming the rigid lid condition at the
surface and flat bottom have the following non-dimensional form:
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is the distance between a vortex with dimensionless circulation καi and the

number α within the ith layer and a vortex with dimensionless circulation κβj and the number β within the jth layer
(α, β = 1, 2, ..., Aj ; i, j = 1, 2); h1 = h2 = 1/2 are the thicknesses of the top and bottom layers, respectively (the
layers are numbered from top to bottom) and K1 is a modifed Bessel function. We assume A1 = 1, A2 = 2 (i. e., we
consider a special case of the three-vortex problem with one vortex in the top layer and two vortices in the bottom layer),
κ12 = κ22 = 1, κ11 = µ < 0. The system (1)-(2), obtained for the first time by [Gryanik(1983)]. We suppose, that at the
initial moment all three vortices lie on a straight line (without loss of generality, we can assume it to be the x axis), so that
the top-layer vortex is situated in the origin of coordinates, as shown in figure 1. If the distances between vortex satisfy
the equation
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we have non-trivial non-symmetric collinear three vortex configurations [Sokolovskiy & Verron(2004)]. This collinear
construction rotates as a solid body with the angular velocity
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REGULAR AND CHAOTIC ADVECTION AROUND THE PERTURBED STEADY STATES

We will focus now on the advection of fluid particles in a velocity field induced by the stationary vortex structures from
the previous section. Figure 2a shows phase portraits for the stationary configuration in the bottom layer with µ = −2.0.
A set of heteroclinic separatrix, embracing the point vortices, forms in the indused velosity field.



Figure 1. Scheme of the initial layout of vortices at µ = −2.5: (a) B < R and (b) B > R. Here and in the figures below, the
triangle marks the position of the top-layer vortex and the circle and the square mark the positions of the bottom-layer vortices; Xc is
the position of the vorticity center. The size of each marker is proportional to the absolute value of the intensity of the vortex. The arc
arrows show the cyclonic or anticyclonic directions of the vortices.

Figure 2. (a) Isolines of stream function in the bottom layer at µ = −2 and the following another parameter values: R = 2.4,
B = 0.003131; (b) Poincaré section for ∆R = 0.1 for thetop layer; (c) Poincaré section for ∆R = 0.1 for the bottom layer.

For simplification, we will consider perturbations preserving the zero component of the impulse of vortex system. We
can consider the class of initial configurations with symmetric displacement of the peripheral vortices in the bottom layer,
i. e., replace R by R+ ∆R and B by B + ∆R.
Figure 2 gives an example where the degree of chaotization is relatively small in the bottom layer and considerable in the
top one. These differences were obtained by the choice of a sufficiently small perturbation amplitude, corresponding to
high frequency perturbed oscillations.
However, the effect is largely governed by the dependence type of turnover frequency of fluid particles in the velocity
field induced by a stationary configuration. In studies by [Izrailsky et al. 2008, Koshel et al. 2008], it is shown that when
perturbations are not too small, the chaotization of phase portrait domains not adjacent to separatrices can be characterized
by the overlapping degree of nonlinear resonances, which, in its turn, is largely determined by the width of the resonances’
domains and the distance between neighbouring resonance domains. These parameters are determined by the derivative
of the turnover frequency with respect to action, which is proportional to the derivative of the frequency with respect to
coordinate.

References

[Gryanik(1983)] GRYANIK, V. M. 1983 Dynamics of singular geostrophic vortices in a two-layer model of the atmosphere (ocean). Izvestiya, Atmos.
Ocean. Phys. 19, 227–240.

[Sokolovskiy & Verron(2004)] SOKOLOVSKIY, M. A. & VERRON, J. 2004 Dynamics of the three vortices in two-layer rotating fluid. Regul. Chaot.
Dyn. 9, 417–438.

[Izrailsky et al. 2008] IZRAILSKY, YU. G., KOSHEL, K. V. & STEPANOV, D. V. 2008 Determination of optimal excitation frequency range in back-
ground flows. Chaos 18, 013107.

[Koshel et al. 2008] KOSHEL, K. V., SOKOLOVSKIY, M. A. & DAVIES, P. A. 2008 Chaotic advection and nonlinear resonances in an oceanic flow
above submerged obstacle. Fluid Dyn. Res. 40, 695–736.


